K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2019

\(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)

\(\Leftrightarrow x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(1+xy\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)=0\)

\(\Leftrightarrow x+y=\frac{xy+1}{x+y}\)

\(\Leftrightarrow xy+1=\left(x+y\right)^2\)

Vì x,y là các số hữu tỉ nên xy + 1 là bình phương của 1 số hữu tỉ (đpcm)

24 tháng 8 2018

A=\(\frac{x^2y^2+x^2z^2+y^2z^2}{x^2y^2z^2}\)

Ta có:\(x^2y^2+x^2z^2+y^2z^2=\left(xy+yz+zx\right)^2-2\left(xyz\right)\left(x+y+z\right)\)

\(=\left(xy+yz+zx\right)^2\)(do x+y+z=0)

Do đó A=\(\frac{\left(xy+yz+zx\right)^2}{\left(xyz\right)^2}=\left[\frac{\left(xy+yz+zx\right)}{xyz}\right]^2\)

Nên A là số chính phương(ĐCCM)

20 tháng 8 2017

Số đó có dạng abc=100a+10b+c=99a +10b+a+c (*) 
Mà a+b+c chia hết cho 11 nên a+b+c=11.k (klà số TN) 
=>a+c=11k-b; thay vào (*) ta có: 99a+11k-9b 
Để 99a+11k-9b chia hết cho 11 thì b chia hết cho 11 nên b=0 (vì a,b,c có 1 chữ số) 
Mà abc chia hết cho 2 nên c chẵn >0.Vậy c=2,4,6,8 ta có a=9,7,5,3 
Các số: 902, 704, 506 và 308 thỏa mãn. 
2) Với a<5 không có a thỏa mãn. 
Xét a>5 ta có a^2+4a+4<a^2+4a+a<a^2+6a+9 
Hay (a+2)^2<a^2+5<(a+3)^2. Mà a+2 và a+3 là 2 số TN liên tiếp nên giữa chúng không có số TN nào cả. (Sử dụng T/c kẹp gjữa hai số chính phương liên tiếp ko có số chính phương nào)

chúc bạn học tốt

20 tháng 8 2017

 Với a<5 không có a thỏa mãn. 
Xét a>5 ta có a^2+4a+4<a^2+4a+a<a^2+6a+9 
Hay (a+2)^2<a^2+5<(a+3)^2. Mà a+2 và a+3 là 2 số TN liên tiếp nên giữa chúng không có số TN nào cả. (Sử dụng T/c kẹp gjữa hai số chính phương liên tiếp ko có số chính phương nào)

chúc bạn học tốt

2 tháng 11 2016

a^2+5a=k^2

a huu ty=> 25+(2k)^2=t^2

2k=0=>k=0

ds:

a=0, a=-5

21 tháng 8 2017
 BÀI LÀM

 Với a<5 không có a thỏa mãn. 
Xét a>5 ta có a^2+4a+4<a^2+4a+a<a^2+6a+9 
Hay (a+2)^2<a^2+5<(a+3)^2. Mà a+2 và a+3 là 2 số TN liên tiếp nên giữa chúng không có số TN nào cả. (Sử dụng T/c kẹp gjữa hai số chính phương liên tiếp ko có số chính phương nào)

Và (Số đó có dạng abc=100a+10b+c=99a +10b+a+c (*) 
Mà a+b+c chia hết cho 11 nên a+b+c=11.k (klà số TN) 
=>a+c=11k-b; thay vào (*) ta có: 99a+11k-9b 
Để 99a+11k-9b chia hết cho 11 thì b chia hết cho 11 nên b=0 (vì a,b,c có 1 chữ số) 
Mà abc chia hết cho 2 nên c chẵn >0.Vậy c=2,4,6,8 ta có a=9,7,5,3 
Các số: 902, 704, 506 và 308 thỏa mãn. 
2) Với a<5 không có a thỏa mãn. 
Xét a>5 ta có a^2+4a+4<a^2+4a+a<a^2+6a+9 
Hay (a+2)^2<a^2+5<(a+3)^2. Mà a+2 và a+3 là 2 số TN liên tiếp nên giữa chúng không có số TN nào cả. (Sử dụng T/c kẹp gjữa hai số chính phương liên tiếp ko có số chính phương nào)