K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2017

\(\dfrac{a}{b+c}+\dfrac{b+c}{a}+\dfrac{b}{a+c}+\dfrac{a+c}{b}+\dfrac{c}{a+b}+\dfrac{a+b}{c}\)

= \(\left(\dfrac{a}{b+c}+\dfrac{b+c}{a}\right)+\left(\dfrac{b}{a+c}+\dfrac{a+c}{b}\right)+\left(\dfrac{c}{a+b}+\dfrac{a+b}{c}\right)\)

áp dụng tích chất tổng 2 phân số nghịch đảo nhau luôn lớn hơn hc bằng 2 . Ta dc biểu thức trên luôn lớn hơn hc bằng 6 .

=> biểu thức trên có GTNN = 6 , khi và chỉ khi a = b = c

10 tháng 3 2017

Bài này ta sẽ áp dụng BĐT : \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Theo bài ra, ta có :

\(A=\dfrac{a}{b+c}+\dfrac{b+c}{a}+\dfrac{b}{a+c}+\dfrac{a+c}{b}+\dfrac{c}{a+b}+\dfrac{a+b}{c}\)

\(=\left(\dfrac{a}{b+c}+\dfrac{b+c}{a}\right)+\left(\dfrac{b}{a+c}+\dfrac{a+c}{b}\right)+\left(\dfrac{c}{a+b}+\dfrac{a+b}{c}\right)\)

\(\left\{{}\begin{matrix}\dfrac{a}{b+c}+\dfrac{b+c}{a}\ge2\\\dfrac{b}{a+c}+\dfrac{a+c}{b}\ge2\\\dfrac{c}{a+b}+\dfrac{a+b}{c}\ge2\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b+c}{a}+\dfrac{b}{a+c}+\dfrac{a+c}{b}+\dfrac{c}{a+b}+\dfrac{a+b}{c}\ge2+2+2=6\)

=) MinA = 6 (=) a = b

Vậy giá trị nhỏ nhất của A là 6 khi và chỉ khi a = b = c

NV
27 tháng 1 2021

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)

\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

8 tháng 1 2021

Hi vọng là tìm GTLN:

Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).

Áp dụng bất đẳng thức AM - GM ta có: 

\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)

\(\Rightarrow a+b+c\le3\).

Áp dụng bất đẳng thức Schwarz ta có:

\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).

Đẳng thức xảy ra khi a = b = c = 1.

8 tháng 1 2021

đề là tìm GTNN ạ, dù gì cũng cảm ơn bạn nha <3

27 tháng 12 2020

tham khảo nha =))

7 tháng 1 2021

11 tháng 3 2018

Lời giải:

a, \(A=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+cb}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=1,5\) (AM-GM với a,b,c\(>0\))

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Chú ý: bn cx có thể cm: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(a,b,c>0\right)\)để suy ra

b, \(B=\dfrac{a}{b+c}+\dfrac{b+c}{a}+\dfrac{b}{a+c}+\dfrac{a+c}{b}+\dfrac{c}{a+b}+\dfrac{a+b}{c}\)

\(\ge6\sqrt[6]{\dfrac{a}{b+c}.\dfrac{b+c}{a}.\dfrac{b}{a+c}.\dfrac{a+c}{b}.\dfrac{c}{a+b}.\dfrac{a+b}{c}}=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Chú ý: bn cx có thể nhóm tổng trên thanh ba nhóm, mỗi nhóm hai hạng tử

11 tháng 3 2018

a)Đặt \(A=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(A+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}\)

\(A+3=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\ge\dfrac{9\left(a+b+c\right)}{2\left(a+b+c\right)}\ge\dfrac{9}{2}\)

\(\Rightarrow A\ge\dfrac{3}{2}\)

\(\Rightarrow MINA=\dfrac{3}{2}\Leftrightarrow a=b=c\)

AH
Akai Haruma
Giáo viên
20 tháng 2 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)

\(P+\frac{29}{2}=\frac{4a}{b+c-a}+2+\frac{9b}{a+c-b}+\frac{9}{2}+\frac{16c}{a+b-c}+8\)

\(=\frac{2(a+b+c)}{b+c-a}+\frac{9(a+b+c)}{2(a+c-b)}+\frac{8(a+b+c)}{a+b-c}\)

\(=2(a+b+c)\left(\frac{1}{b+c-a}+\frac{\frac{9}{4}}{a+c-b}+\frac{4}{a+b-c}\right)\)

\(\geq 2(a+b+c).\frac{(1+\frac{3}{2}+2)^2}{b+c-a+a+c-b+a+b-c}=\frac{81}{2}.(a+b+c).\frac{1}{a+b+c}=\frac{81}{2}\)

\(\Rightarrow P\geq \frac{81}{2}-\frac{29}{2}=26\)

Vậy \(P_{\min}=26\)

18 tháng 4 2018

Áp dụng bất đẳng thức Cauchy-Schwarz: \(S=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{4}{c}+\dfrac{16}{d}\ge\dfrac{\left(1+1+2+4\right)^2}{a+b+c+d}=\dfrac{64}{8}=8\)

18 tháng 4 2018

giải rõ một chút nhé !

8 tháng 8 2023

Ta có:

\(P=\dfrac{a+3}{a+1}+\dfrac{b+3}{b+1}+\dfrac{c+3}{c+1}\)

\(P=3+2.\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)

\(P\ge3+2.\dfrac{9}{a+b+c+3}=6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(min_P=6\), xảy ra khi \(a=b=c=1\)