
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\left|x-7\right|\ge x-7\Rightarrow A\ge x-7+3-x=-4\)
Dấu "=" xảy ra <=> \(x-7\ge0\Leftrightarrow x\ge7\)
b)\(\left|x+7\right|\ge x+7;\left|x+3\right|\ge0;\left|x+1\right|\ge-x-1\Rightarrow B\ge x+7+0-x-1=6\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+7\ge0\\x+3=0\\x+1\le0\end{cases}\Leftrightarrow x=-3}\)
c) \(\left|2-x\right|\ge x-2;\left|5-x\right|\ge5-x\Rightarrow C\ge x-2+5-x=3\)
Dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}2-x\le0\\5-x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\le5\end{cases}}\)

'THAM KHẢO
a,
Điều kiện: x+2≥0⇔x≥−2x+2≥0⇔x≥-2
|2x+3|=x+2|2x+3|=x+2
⇔[2x+3=x+22x+3=−x−2⇔[2x+3=x+22x+3=−x−2
⇔[x=−13x=−5⇔[x=−13x=−5
⇔⎡⎣x=−1(t/m)x=−53(t/m)⇔[x=−1(t/m)x=−53(t/m)
Vậy x∈{−1;−53}x∈{-1;-53}
b,
A=|x−2006|+|2007−x|≥|x−2006+2007−x|=|1|=1A=|x−2006|+|2007−x|≥|x−2006+2007−x|=|1|=1
Đẳng thức xảy ra ⇔(x−2006)(2007−x)≥0⇔(x−2006)(2007−x)≥0
⇔(x−2006)(x−2007)≤0⇔(x−2006)(x−2007)≤0
Vì x−2006>x−2007x−2006>x−2007
⇒{x−2006≥0x−2007≤0⇒{x−2006≥0x−2007≤0
⇔{x≥2006x≤2007⇔{x≥2006x≤2007
⇔2006≤x≤2007⇔2006≤x≤2007
Vậy Amin=1⇔2006≤x≤2007

Bài 1 :
a) Vì ( x + 1 )2 ≥ 0 ∀ x
=> M = ( x + 1 )2 - 3 ≥ -3
Dấu "=" xảy ra <=> ( x + 1 )2 = 0
<=> x + 1 = 0 <=> x = -1
b) Vì ( y + 3 )2 ≥ 0 ∀ x
=> N = 5 - ( y + 3 )2 ≥ 5
Dấu "=" xảy ra <=> ( y + 3 )2 = 0
<=> y + 3 = 0 <=> y = -3

Vì \(5x=2y=3z\)
\(\Rightarrow5x:30=2y:30=3z:30\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Lại có: \(x+y-2=220\Rightarrow x+y=222\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)
Vậy ...
Bài 1:
\(5x=2y=3z\)
\(\Rightarrow5x:30=2y:30=3z:30\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Vì \(x+y-2=220\Rightarrow x+y=222\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y}{6+15}=\frac{222}{21}=\frac{74}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{74}{7}.6=\frac{444}{7}\\y=\frac{74}{7}.15=\frac{1110}{7}\\z=\frac{74}{7}.10=\frac{740}{7}\end{cases}}\)


A=lx+5l+2-x (1)
Để A có GTNN thì lx+5l có GTNN
Ta thấy: lx+5l > 0 với mọi x
Dấu "=" xảy ra là GTNN của lx+5l
=> lx+5l = 0
=> x+5=0 => x = -5
Thay x = -5; lx+5l=0 vào (1) ta được:
A= 0 + 2 + 5 =7
Vậy MinA=7 khi mà chỉ khi x=-5
\(\sqrt{g}\)