Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử 1 \(<\) x \(\le\)y. Đặt x+1=yk ( k là một là một số tự nhiên khác 0)
Ta có : x+1 = yk \(\le\) y+1 \(<\) y+y = 2y
=> yk \(<\) 2y
=> k\(<\) 2
Mà k là một là một số tự nhiên khác 0
Nên k=1
Thay k = x+1 vào y+1 ta được
x+1+1 = x+2 chia hết cho x
Mà x chia hết cho x nên 2 chia hết cho x
=> x\(\in\left\{1;2\right\}\)
Với x=1 thì y=x+1=1+1=2
Với x=2 thì y=2+1=3
Vậy các cặp số (x;y) thỏa mãn : (1;2) ; (2;3)


Chúng ta cần chứng minh các điều kiện sau cho các số nguyên dương \(x\) và \(y\) thỏa mãn \(x^{3} + 1\) chia hết cho \(y + 1\) và \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Bài toán phần a)
Chứng minh rằng \(x^{3} + 1\) chia hết cho \(y + 1\).
Giải: Ta đã biết rằng \(x^{3} + 1\) chia hết cho \(y + 1\), tức là:
\(\frac{x^{3} + 1}{y + 1} \in \mathbb{Z} .\)
Ta có thể xem xét \(x^{3} + 1\) dưới dạng nhân tử:
\(x^{3} + 1 = \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)
Ta cần chứng minh rằng \(\left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right)\) chia hết cho \(y + 1\). Điều này có nghĩa là \(y + 1\) là ước của \(x^{3} + 1\), hay là:
\(y + 1 \mid \left(\right. x + 1 \left.\right) \left(\right. x^{2} - x + 1 \left.\right) .\)
Giả sử rằng \(x^{3} + 1\) chia hết cho \(y + 1\), thì sẽ có một số \(k\) sao cho:
\(x^{3} + 1 = k \left(\right. y + 1 \left.\right) ,\)
tức là \(k\) là một số nguyên. Như vậy, \(x^{3} + 1\) chia hết cho \(y + 1\), và bài toán đã được chứng minh cho phần a.
Bài toán phần b)
Chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Giải: Ta cần chứng minh rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), tức là:
\(\frac{x^{3} y^{3} - 1}{y + 1} \in \mathbb{Z} .\)
Ta có thể biến đổi \(x^{3} y^{3} - 1\) theo công thức phân tích đa thức:
\(x^{3} y^{3} - 1 = \left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right) .\)
Ta cần chứng minh rằng \(\left(\right. x y - 1 \left.\right) \left(\right. x^{2} y^{2} + x y + 1 \left.\right)\) chia hết cho \(y + 1\).
Giả sử rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), ta có:
\(x^{3} y^{3} - 1 = m \left(\right. y + 1 \left.\right) ,\)
với một số nguyên \(m\), do đó \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).
Như vậy, ta đã chứng minh được rằng \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\), hoàn thành bài toán phần b.
Kết luận: Chúng ta đã chứng minh được rằng:
- a) \(x^{3} + 1\) chia hết cho \(y + 1\),
- b) \(x^{3} y^{3} - 1\) chia hết cho \(y + 1\).