K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

\(\text{Với x;y là hai số thực dương ta có: }x+y\ge2\sqrt{xy}\text{ Dấu "=" xảy ra khi x=y }\)

\(\text{Với x;y;z là 3 số thực duong ta có: }x+y+z\ge3\sqrt[3]{xyz}\text{ Dấu "=" xảy ra khi x=y=z}\)

23 tháng 8 2021

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

23 tháng 8 2021

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

Tham khảo Bất đẳng thức Côsi ( Cauchy ) - ToanHoc.org

5 tháng 1 2022

nhanh + gọn + lẹ

13 tháng 12 2017

https://h oc 24 .vn/bg/batdangthucamgm/

16 tháng 11 2016

\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)

\(\Leftrightarrow a+b+c-3\sqrt[3]{abc}\ge0\)

\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3+c-3\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)-3\sqrt[3]{abc}\ge0\)

\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\)

Mà ta có \(\hept{\begin{cases}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\ge0\\\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\end{cases}}\)nên cái BĐT là đúng

16 tháng 11 2016
  • Ta có BĐT giữa trung bình nhân và trung bình cộng : \(\frac{a+b}{2}\ge\sqrt{ab}\) ; \(\frac{c+d}{2}\ge\sqrt{cd}\)
  • Trước hết ta chứng minh BĐT \(\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)

Áp dụng BĐT trên , ta được :  \(\frac{a+b+c+d}{2}=\frac{a+b}{2}+\frac{c+d}{2}\ge2\sqrt{\frac{\left(a+b\right)}{2}.\frac{\left(c+d\right)}{2}}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\)

\(\Leftrightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) (*)

  • Đặt \(d=\frac{a+b+c}{3}\) thì \(a+b+c=3d\) (**)

Từ (*) và (**) ta có : \(\frac{3d+d}{4}\ge\sqrt[4]{abcd}\Leftrightarrow d\ge\sqrt[4]{abcd}\Leftrightarrow d^4\ge abcd\Leftrightarrow d^3\ge abc\Leftrightarrow d\ge\sqrt[3]{abc}\) 

hay \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (đpcm)

Bạn tự xét dấu đẳng thức nhé!

13 tháng 2 2022

TL:

Chỗ tôi được phép sử dụng luôn ko cần chứng minh

HT

13 tháng 2 2022

????

cho 1 vé báo cáo free nhé

21 tháng 7 2016

Áp dụng BĐT Cô - si cho hai số không âm ta được

\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)

Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)

\(\Leftrightarrow\left(x^2+3\right)^2=1\)

\(\Leftrightarrow x^4+6x^2+9=1\)

\(\Leftrightarrow x^4+6x^2+8=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)

\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)

Vậy GTNN của M là 2