K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

Ta có:\(\left(a^2+bc\right)\left(b+c\right)=b\left(a^2+c^2\right)+c\left(a^2+b^2\right)\)

\(\Rightarrow\sqrt{\frac{\left(a^2+bc\right)\left(b+c\right)}{a\left(b^2+c^2\right)}}=\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)

Tương tự\(\Rightarrow\)VT=\(\Sigma\sqrt{\frac{b\left(a^2+c^2\right)+c\left(a^2+b^2\right)}{a\left(b^2+c^2\right)}}\)

Đặt \(x=a\left(b^2+c^2\right)\);\(y=b\left(a^2+c^2\right)\);\(z=c\left(b^2+a^2\right)\)

VT=\(\sqrt{\frac{x+y}{z}}+\sqrt{\frac{y+z}{x}}+\sqrt{\frac{x+z}{y}}\ge3\sqrt[6]{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}}\ge3\sqrt{2}\)(BĐT Cô-si)

Dấu''='' xra\(\Leftrightarrow\)a=b=c

3 tháng 10 2019

https://hoc24.vn/id/2782086

3 tháng 10 2019

@Nguyễn Việt Lâm

AH
Akai Haruma
Giáo viên
25 tháng 8 2020

Lời giải:

Ta có:

$a^2+b^2+c^2+ab+bc+ac=\frac{6(a^2+b^2+c^2+ab+bc+ac)}{6}=\frac{4(a+b+c)^2+(a-b)^2+(b-c)^2+(c-a)^2}{6}$

$\geq \frac{(a-b)^2+(b-c)^2+(c-a)^2}{6}$

$\Rightarrow P\geq \frac{(a-b)^2+(b-c)^2+(c-a)^2}{6}.\left[\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}\right]$

Đặt $a-b=m, b-c=n$ thì $a-c=m+n$

Khi đó:

$6P\geq [m^2+n^2+(m+n)^2]\left[\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{(m+n)^2}\right]$

Áp dụng BĐT AM-GM và Cauchy-Schwarz:

$[m^2+n^2+(m+n)^2]\left[\frac{1}{m^2}+\frac{1}{n^2}+\frac{1}{(m+n)^2}\right]$

$\geq [\frac{(m+n)^2}{2}+(m+n)^2]\left[\frac{1}{2}(\frac{1}{m}+\frac{1}{n})^2+\frac{1}{(m+n)^2}\right]$

$\geq \frac{3}{2}.(m+n)^2\left[\frac{8}{(m+n)^2}+\frac{1}{(m+n)^2}\right]$

$=\frac{3}{2}(m+n)^2.\frac{9}{(m+n)^2}=\frac{27}{2}$

$\Rightarrow 6P\geq \frac{27}{2}$

$\Rightarrow P\geq \frac{9}{4}$

Vậy GTNN của $P$ là $\frac{9}{4}$.

24 tháng 8 2020

chuẩn rồi bạn bài này mình lấy ra từ đề thi tỉnh học sinh giỏi mà

16 tháng 2 2021

giúp với 

2 tháng 9 2019

* Bài này sử dụng cách đẳng thức:

\(a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}.\Sigma\left(a-b\right)^2\)

\(27\left(a+b\right)\left(b+c\right)\left(c+a\right)-8\left(a+b+c\right)^3\)

\(=\Sigma\left(-4a-4b-c\right)\left(a-b\right)^2\)

--------------------------------------------------

\(BĐT\Leftrightarrow\frac{8\left(a^2+b^2+c^2-ab-bc-ca\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)-8\left(a+b+c\right)^3}{\left(a+b+c\right)^3}\ge0\) (tự hiểu:v)

\(\Leftrightarrow\frac{4.\frac{1}{2}\Sigma\left(a-b\right)^2}{ab+bc+ca}+\frac{\Sigma\left(-4a-4b-c\right)\left(a-b\right)^2}{\left(a+b+c\right)^3}\ge0\)

\(\Leftrightarrow\Sigma\left(a-b\right)^2\left(\frac{2}{ab+bc+ca}-\frac{4a+4b+c}{\left(a+b+c\right)^3}\right)\ge0\)

Ta chỉ cần chứng minh \(\frac{2}{ab+bc+ca}-\frac{4a+4b+c}{\left(a+b+c\right)^3}>0\) (rồi tương tự các biểu thức còn lại phía sau:v)

\(\Leftrightarrow\frac{2\left(a+b+c\right)^3-\left(4a+4b+c\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)\left(a+b+c\right)^3}>0\)

\(\Leftrightarrow\frac{2a^3+2a^2b+2a^2c+2ab^2+3abc+5ac^2+2b^3+2b^2c+5bc^2+2c^3}{\left(ab+bc+ca\right)\left(a+b+c\right)^3}>0\) (luôn đúng với mọi a, b, c > 0)

Như vậy tương tự các biểu thức còn lại phía sau ta có đpcm.

Đẳng thức xảy ra khi a = b = c

2 tháng 9 2019

2/9 vui vẻ, tặng quà nhá ^^

9 tháng 6 2020

Không mất tính tổng quát, chuẩn hóa a + b + c = 1

Khi đó, ta cần chứng minh: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\le8\)

Xét bất đẳng thức phụ: \(\frac{\left(x+1\right)^2}{2x^2+\left(1-x\right)^2}\le4x+\frac{4}{3}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(3x-1\right)^2\left(4x+1\right)}{2x^2+\left(1-x\right)^2}\ge0\)*đúng*

Áp dụng, ta được: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\)\(\le4\left(a+b+c\right)+4=4.1+4=8\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

25 tháng 7 2019

Chuẩn hóa ta có : \(a+b+c=3\)

=> \(\frac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\frac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\)

Xét\(\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\le\frac{4}{3}a+\frac{4}{3}\)

<=> \(a^2+6a+9\le4\left(a+1\right)\left(a^2-2a+3\right)\)

<=> \(4a^3-5a^2-2a+3\ge0\)

<=> \(\left(a-1\right)^2\left(4a+3\right)\ge0\)luôn đúng

Khi đó 

\(VT\le\frac{4}{3}\left(a+b+c\right)+4=\frac{4}{3}.3+4=8\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c