K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chứng minh bằng cách phản chứng

Giả sử tồn tại số nguyên tố p thõa mãn

Đặt 3p + 19 ( p - 1 ) = n2 ( n là một số nguyên )

* Nếu p = 2, 3 dễ thấy không có số số nguyên n nào thõa mãn

* Nếu p > 3 , p lẻ

+ ) p = 4k + 1

Ta có : 3 ≡ - 1 ( mod4 )

nên 3p ≡ - 1 ( mod4 )

và 19 ≡ 3 ( mod4 ) ; p - 1 ≡ 0 ( mod4 )

Do đó VT  ≡ VP ≡ - 1 ( mod4 ) ( vô lí )

+ ) p = 4k + 3

Theo định lí Fermat ta có :

3p  ≡ 3 ( modp )

và 19 ( p - 1 ) ≡ - 19 ( modp )

nên VT ≡ - 16 ( modp )

Do đó n2 + 16 \(⋮\) p

Từ đề ta có 4 \(⋮\) p ( vô lí vì 4 không có ước dạng 4k + 3 )

Vậy ta có đpcm

Gỉa sử tồn tại số nguyên p thỏa mãn 

Đặt \(3^p+19\left(p-1\right)=n^2\)( n là 1 số nguyên )

* Nếu p=2,3 . Dễ có ko có số nguyên n nào thỏa mãn 

* Nếu p>3 , p lẻ 

+) p=4k +1

Ta có 

\(3=-1\left(modA\right)\)

nên : \(3^p=-1\left(modA\right)\)

Mà \(19\equiv3\left(modA\right);p-1\equiv0\left(modA\right)\)

Do đó : \(VT\equiv VP\equiv-1\left(modA\right)\)( vô lí )

+) p=4k+3

Theo định lí Fermat ta có 

\(3^p=3\left(modp\right)\)

và \(19\left(p-1\right)\equiv-19\left(modp\right)\)

nên \(VT\equiv-16\left(modp\right)\)

Do đó : \(n^2+16⋮p\)

-> Ta có : \(4⋮b\)( vô lí )

Vậy ta có đpcm 

Do các số nguyên dương là phân biệt nên tổng 3 số bất kì bao giờ cũng lớn hơn 3

Xét số dư trong phép chia các số này cho 3. Nếu các số dư là 0;1;2 đều xuất hiện thì ta lấy 3 số tương ứng, ta sẽ được tổng 3 số chia hết cho 3

=>LOại

Nếu có 1 số dư nào đó không xuất hiện thì có 5 số và chỉ có nhiều nhất 2 số dư

=>Suy ra tồn tại 3 số có cùng số dư

=>Ba số này có tổng chia hết cho 3

=>ĐPCM

26 tháng 3 2020

Với n= 3 ,  ,chọn x3 =y3 =1

Giả sử với n \(\ge\)3 , tồn tại cặp số nguyên dương lẻ ( xn ,yn ) sao cho 7.xn2 + y2n= 2n.Ta chứng minh mỗi cặp 

\(\left(X=\frac{x_n+y_n}{2},Y=\frac{\left|7.x_n-y_n\right|}{2}\right)\),

\(\left(X=\frac{\left|x_n-y_n\right|}{2},Y=\frac{7.x_n\pm y_n}{2}\right)^2=2.\left(7.x_n^2+7_n^2\right)=2.2^n=2^{n+1}\)

Vì xn,yn lẻ nên xn = 2a+1 ; yn = 2k + 1 ( a,k \(\inℤ\)

\(\Rightarrow\frac{x_n+y_n}{2}=k+1+1\)và \(\frac{\left|x_n-y_n\right|}{2}=\left|k-1\right|.\)

Điều đó chứng tỏ rằng một trong các số \(\frac{x_n+y_n}{2}.\frac{\left|x_n+y_n\right|}{2}\)là lẻ .Vì vậy với n + 1 tồn tại các số tự nhiên lẻ xn+1 và yn+1 thỏa mãn 7.x2n+1 + y2n+1 =2n+1=> đpcm