K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

Áp dụng liên tiếp BĐT \(\frac{\left(x+y\right)^2}{2}\le x^2+y^2\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)

\(\left(\frac{a+b}{2}\right)^4=\left(\frac{\frac{\left(a+b\right)^2}{2}}{2}\right)^2\le\left(\frac{a^2+b^2}{2}\right)^2=\left(\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\right)\le\frac{a^4+b^4}{2}\)

Dấu "=" xảy ra tại a=b

Vậy..................

2 tháng 11 2016

Mình ko biết làm vì mình chỉ mới học lớp 6

\(\left(a^2+b^2\right)\ge2ab\)

\(\left(a^2+1\right)\ge2a\)

Do đó: \(\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\)

13 tháng 6 2016

thế còn c ở đâu?

14 tháng 6 2016

cảm ơn bạn nhìu

22 tháng 11 2018

a) Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

Ta có:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}+1\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)

\(\Rightarrow\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{2}\right)\)

\(\Rightarrow A< \dfrac{1}{2^2}.2-\dfrac{1}{2^2}.\dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2^3}< \dfrac{1}{2}\)

Vậy \(A< \dfrac{1}{2}\left(Đpcm\right)\)

b) Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}\)

Ta có:

\(B< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(B< \dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(\dfrac{2n+1}{2n+1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}.\dfrac{2n}{2n+1}\)

\(B< \dfrac{2n}{4n+2}\)

\(B< \dfrac{2n}{2\left(2n+1\right)}\)

\(B< \dfrac{n}{2n+1}\)

18 tháng 7 2017

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)

\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

b ) chuyển vế tương tự

1 tháng 2 2018

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

BĐT đúng .

21 tháng 5 2018

Áp dụng BĐT Cô - si dạng Engel , ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}\)\(\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{a+b}\)

Đẳng thức xảy ra khi : a = b