K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2019

Ta có : a3 - a = a( a2 - 1 ) = a( a - 1 )( a + 1 ) = ( a - 1 )a( a + 1 )

Ta thấy : a - 1 và a là hai số nguyên liên tiếp.

=> ( a + 1 )a chia hết cho 2 (1)

Lại thấy: ( a - 1) ; a và ( a + 1 ) là ba số nguyên liên tiếp.

=> ( a - 1)a( a + 1 ) chia hết cho 3 (2)

Từ (1) và (2) suy ra  ( a - 1)a( a + 1 ) chia hết cho 2 và 3

Mà ( 2;3 ) = 1

Có : 2 . 3 = 6

=> ( a - 1)a( a + 1 ) chia hết cho 6

=> a3 - a chia hết cho 6 với mọi a thuộc Z (đpcm)

Hok tốt !

23 tháng 2 2019

Ta có : m.n( m2.n

= m.n [( m2 - 1 ) - ( n2 - 1)]

= m( m2 - 1 )n - mn( n2 - 1 )

=  ( m - 1 )m( m + 1 )n - m( n - 1 )n( n + 1 )

Ta thấy: * ( m - 1) ; m và ( m + 1) là ba số nguyên liên tiếp 

                => ( m - 1 )m( m + 1 ) chia hết cho 6

                => ( m - 1 )m ( m + 1 )n chia hết cho 6 (1)

             * ( n - 1) ; n ; ( n + 1 ) là ba số nguyên liên tiếp

                => ( n - 1)n( n + 1 ) chia hết cho 6

                => m( n - 1 )n( n + 1 ) chia hết cho 6 (2)

Từ (1) và (2) suy ra : ( m - 1)m( m + 1)n - m( n - 1)n( n + 1 ) chia hết cho 6

Vậy m.n( m2.n) chia hết cho 6 (đpcm)

Hok tốt !

23 tháng 2 2019

Em kiểm tra lại đề và có thể tham khảo 1 cách giải ( lớp 7 có thể hiểu):

Câu hỏi của Luong Ngoc Quynh Nhu - Toán lớp 8 - Học toán với OnlineMath

14 tháng 2 2016

a ) 10n + 72n - 1 chia hết cho 81

+ ) n = 0 => 100 + 72 . 0 - 1 = 0

+ ) Giả sử đúng đến n = k tức là :

( 10k + 72k - 1 ) chia hết cho 81 ta phải chứng minh đúng đến n = k+ 1

Tức là : 10k + 1 + 72 x k + 71

=> 10 . 10k + 72k + 71

=> 10 . \(\frac{10k+72k-1}{chiahetcho81}\)\(\frac{648k+27}{chiahetcho81}\)

=> đpcm

Câu b và c làm tương tự

13 tháng 2 2016

Đặt B= 10n+72n-1

B = 10ⁿ + 72n - 1

  = 10ⁿ - 1 + 72n

Ta có: 10ⁿ - 1 = 99...9 (có n-1 chữ số 9)  

   = 9x(11..1) (có n chữ số 1)
A = 10ⁿ - 1 + 72n = 9x(11...1) + 72n

=> A : 9 = 11..1 + 8n

thấy 11...1 có n chữ số 1 có tổng các chữ số là n => 11..1 - n chia hết cho 9
=> A : 9 = 11..1 - n + 9n chia hết cho 9

= 11...1 -n + 9n
=> A : 9 =  chia hết cho 9
=> A chia hết cho 81

20 tháng 2 2016

a) Đặt cái cần chứng minh là (*)

+) Với n = 0 thì (*) chia hết cho 81 => (*) đúng

+) Giả sử (*) luôn đúng với mọi n = k (k \(\ge\) 0) => 10k + 72k - 1 chia hết cho 81 thì ta cần chứng minh (*) cũng luôn đúng với k + 1 tức 10k + 1 + 72(k + 1) - 1 chia hết cho 81

Thật vậy:

10k + 1 + 72(k + 1) - 1

= 10k.10 + 72k + 72 - 1

= 10k + 72k + 9.10k + 72 - 1

= (10k + 72k - 1) + 9.10k + 72

đến đây tui ... chịu :))

22 tháng 2 2016

Nhọ Nồi Dù sao thì cx camon's -_-

24 tháng 2 2020

Thử nha :33

Do a không chia hết cho 3 nên \(\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}\left(k\inℤ\right)}\)

Với \(a=3k+1\) thì : \(P\left(x\right)=x^3-\left(3k+1\right)^2.x+2016b\)

\(=x^3-9k^2x-6k-x+2016b\)

\(=x\left(x-1\right)\left(x+1\right)-9k^2x-6kx+2016b⋮3\)

Với \(a=3k+2\) thi \(P\left(x\right)=x^3-\left(3k+2\right)^2.x+2016b\)

\(=x^3-9k^2x-12kx-4x+2016b\)

\(=x\left(x^2-4\right)-9k^2x-12kx+2016b\)

\(=\left(x-2\right)x\left(x+2\right)-9k^2x-12kx+2016b⋮3\)

Vậy ta có điều phải chứng minh.

22 tháng 4 2017

mk thấy bn nên xem lại đề đi. nếu n=1 thì \(6^{2n}+19^n-2^{n+1}\) ko chia hết cho 17

9 tháng 7 2017

62n+19n-2n+1=36n+19n-2n2=(36n-2n)+(19n-2n)=34k+17j chia het 17

vay bt chia het 17