K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

\(P=\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\ge\frac{1+x^2}{1+\frac{y^2+1}{2}+z^2}+\frac{1+y^2}{1+\frac{z^2+1}{2}+x^2}+\frac{1+z^2}{1+\frac{x^2+1}{2}+y^2}\)

\(P\ge\frac{2\left(1+x^2\right)}{3+y^2+2z^2}+\frac{2\left(1+y^2\right)}{3+z^2+2x^2}+\frac{2\left(1+z^2\right)}{3+x^2+2y^2}\)

Đặt \(\left\{{}\begin{matrix}3+y^2+2z^2=a\\3+z^2+2x^2=b\\3+x^2+2y^2=c\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1+x^2=\frac{c+4b-2a}{9}\\1+y^2=\frac{a+4c-2b}{9}\\1+z^2=\frac{b+4a-2c}{9}\end{matrix}\right.\) với \(a;b;c\ge3\)

\(\Rightarrow P\ge\frac{2\left(c+4b-2a\right)}{9a}+\frac{2\left(a+4c-2b\right)}{9b}+\frac{2\left(b+4a-2c\right)}{9c}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{c}{a}+\frac{a}{b}+\frac{b}{c}\right)+\frac{8}{9}\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)-\frac{4}{3}\)

\(\Rightarrow P\ge\frac{2}{9}.3+\frac{8}{9}.3-\frac{4}{3}=2\)

Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z=1\)

20 tháng 11 2019

Áp dụng BĐT AM - GM:

\(\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2\left(1-x^2\right)}}\ge2x^3\)

Tương tự ta CM được:

\(\frac{y^2}{\sqrt{1-y^2}}=\frac{y^3}{\sqrt{y^2\left(1-y^2\right)}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}=\frac{z^3}{\sqrt{z^2\left(1-z^2\right)}}\ge2z^3\)

Cộng vế với vế 3 bất đẳng thức trên, ta được:

\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)

bạn xem lại đề xem, mình làm thấy dấu ''='' không xảy ra

NV
20 tháng 11 2019

\(\frac{x^2}{\sqrt{1-x^2}}=\frac{2x^3}{2x\sqrt{1-x^2}}\ge\frac{2x^3}{x^2+1-x^2}=2x^3\)

Tương tự: \(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3\) ; \(\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)

Cộng vế với vế:

\(VT\ge2\left(x^3+y^3+z^3\right)=2\)

Dấu "=" ko xảy ra nên BĐT sai, vế trái lớn hơn vế phải 1 cách tuyệt đối.

BĐT đúng là: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}>2\)

15 tháng 10 2019

\(1+y+z^2\le1+\frac{1+y^2}{2}+z^2\)

\(\frac{1+x^2}{1+y+z^2}\ge\frac{2\left(1+x^2\right)}{1+b^2+2\left(1+c^2\right)}\)

Bất đẳng thức cần chứng minh tương đương

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)

với \(a=1+x^2,b=1+y^2,c=1+z^2\)

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge1\)

Chứng minh hoàn tất. Đẳng thức xảy ra khi \(a=b=c=1\)

17 tháng 10 2019

Lâu thiệt lâu mới thấy e ngoi lên á -)))

8 tháng 3 2019

\(VT=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=2+\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\)

Bài toán trở thành \(\frac{z}{x}+\frac{y}{x}+\frac{y}{z}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}\ge\frac{x+y+z}{3\sqrt{xyz}}\)

Áp dụng bất đẳng thức AM-GM:

\(\frac{z}{x}+\frac{z}{y}+\frac{z}{z}\ge3\sqrt[3]{\frac{z^3}{xyz}}=\frac{3z}{\sqrt[3]{xyz}}\)

Tương tự:

\(\frac{y}{x}+\frac{y}{z}+\frac{y}{y}\ge\frac{3y}{\sqrt[3]{xyz}}\)

\(\frac{x}{z}+\frac{x}{y}+\frac{x}{x}\ge\frac{3x}{\sqrt[3]{xyz}}\)

\(\Leftrightarrow VT+3\ge3+\frac{3}{\sqrt[3]{xyz}}\left(x+y+z\right)\)

\(\Leftrightarrow VT\ge\frac{3\left(x+y+z\right)}{\sqrt[3]{xyz}}\)\(\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Is it true?

19 tháng 8 2020

Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)

Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)

Áp dụng Bất Đẳng Thức Cauchy ta có

\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)

\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)

Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)

\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)

Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)

26 tháng 7 2019

ấy chết,sửa: \(\sqrt{xyz}\) thành \(\sqrt[3]{xyz}\). Em cứ nhầm cái này

26 tháng 7 2019

Em thử nha, ko chắc đâu;( em thấy nó giống giống lời giải một bài toán nào đó trên tạp chí toán tuổi thơ mà em đã đọc qua lúc trước: chỗ khúc cuối xét \(t_1>t_2\ge3\) ấy ạ. Nên bắt chước lại chỗ đó. tạm thời em chưa nghĩ ra lời nào khác.

Từ đề bài ta có \(1=xyz\le\frac{\left(x+y+z\right)^3}{27}\Rightarrow t=x+y+z\ge3\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{t^2}{t+3}\). Cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\left(t\ge3\right)\Leftrightarrow f\left(t\right)=2t^2-3t-9\ge0\) (1)

Xét \(t_1>t_2\ge3\). Khi đó \(f\left(t_1\right)-f\left(t_2\right)=2\left(t_1^2-t_2^2\right)-3\left(t_1-t_2\right)\)

\(=2\left(t_1-t_2\right)\left(t_1+t_2\right)-3\left(t_1-t_2\right)\)

\(=\left(t_1-t_2\right)\left(2t_1+2t_2-3\right)>\left(t_1-t_2\right)\left(2.3+2.3-3\right)=9\left(t_1-t_2\right)>0\) (do \(t_1>t_2\ge3\))

Do đó khi t tăng thì hàm số f(t) tăng, tương tự t giảm thì f(t) giảm với \(t\ge3\). Do đó f(t) đạt giá trị nhỏ nhất khi t = 3.

Khi đó f(t) = 0. Do đó (1) đúng hay ta có đpcm.

AH
Akai Haruma
Giáo viên
22 tháng 8 2019

Lời giải:

Vì $xy+yz+xz=1$ nên:

\(x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\)

\(y^2+1=y^2+xy+yz+xz=(y+x)(y+z)\)

\(z^2+1=z^2+xy+yz+xz=(z+y)(z+x)\)

Do đó:

\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{1+z^2}=\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\)

\(=\frac{x(y+z)+y(x+z)+z(x+y)}{(x+y)(y+z)(x+z)}=\frac{2(xy+yz+xz)}{(x+y)(y+z)(x+z)}=\frac{2}{\sqrt{(x+y)^2(y+z)^2(x+z)^2}}\)

\(=\frac{2}{\sqrt{(x+y)(x+z)(y+z)(y+x)(z+x)(z+y)}}=\frac{2}{\sqrt{(x^2+1)(y^2+1)(z^2+1)}}\) (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 8 2019

Lời giải:

Vì $xy+yz+xz=1$ nên:

\(x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\)

\(y^2+1=y^2+xy+yz+xz=(y+x)(y+z)\)

\(z^2+1=z^2+xy+yz+xz=(z+y)(z+x)\)

Do đó:

\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{1+z^2}=\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\)

\(=\frac{x(y+z)+y(x+z)+z(x+y)}{(x+y)(y+z)(x+z)}=\frac{2(xy+yz+xz)}{(x+y)(y+z)(x+z)}=\frac{2}{\sqrt{(x+y)^2(y+z)^2(x+z)^2}}\)

\(=\frac{2}{\sqrt{(x+y)(x+z)(y+z)(y+x)(z+x)(z+y)}}=\frac{2}{\sqrt{(x^2+1)(y^2+1)(z^2+1)}}\) (đpcm)