K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2020

\(\Leftrightarrow8y^2-8xy+4x^2-11x+14=0\) (1)

Để tồn tại x;y \(\Rightarrow\) (1) có nghiệm y

\(\Leftrightarrow\Delta'=16x^2-8\left(4x^2-11x+14\right)\ge0\)

\(\Leftrightarrow-16x^2+88x-112\ge0\Rightarrow2\le x\le\frac{7}{2}\)

\(x_{max}=\frac{7}{2}\Rightarrow\) thay vào (1) giải ra y

\(x_{min}=2\) thay vào (1) giải ra y

1 tháng 11 2022

\(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

\(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt \(\hept{\begin{cases}x+1=u\\y-2=v\end{cases}}\Rightarrow A=\sqrt{u^4+1}+\sqrt{v^4+1}\)(với \(u,v\inℝ\))

Điều kiện đã cho ban đầu trở thành \(\left(u+1\right)\left(v+1\right)=\frac{9}{4}\)

\(\Leftrightarrow uv+u+v+1=\frac{9}{4}\Leftrightarrow uv+u+v=\frac{5}{4}\)

Ta có: \(\hept{\begin{cases}\left(2u-1\right)^2\ge0\forall u\inℝ\\\left(2v-1\right)^2\ge0\forall v\inℝ\end{cases}}\Leftrightarrow\hept{\begin{cases}4u^2-4u+1\ge0\\4v^2-4v+1\ge0\end{cases}}\forall u,v\inℝ\)

\(\Rightarrow\hept{\begin{cases}4u^2+1\ge4u\\4v^2+1\ge4v\end{cases}}\Rightarrow u^2+v^2\ge u+v-\frac{1}{2}\forall u,v\inℝ\)(*)

và \(\left(u-v\right)^2\ge0\forall u,v\inℝ\Leftrightarrow u^2-2uv+v^2\ge0\forall u,v\inℝ\)

\(\Rightarrow u^2+v^2\ge2uv\forall u,v\inℝ\Leftrightarrow\frac{1}{2}\left(u^2+v^2\right)\ge uv\forall u,v\inℝ\)(**)

Cộng theo vế của (*) và (**), ta được: \(\frac{3}{2}\left(u^2+v^2\right)\ge uv+u+v-\frac{1}{2}=\frac{5}{4}-\frac{1}{2}=\frac{3}{4}\)

\(\Rightarrow u^2+v^2\ge\frac{1}{2}\)(**

Áp dụng bất đẳng thức Minkowski, ta được:

\(A=\sqrt{u^4+1}+\sqrt{v^4+1}\ge\sqrt{\left(u^2+v^2\right)^2+\left(1+1\right)^2}\)

\(=\sqrt{\left(u^2+v^2\right)^2+4}\ge\sqrt{\left(\frac{1}{2}\right)^2+4}=\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)

Đẳng thức xảy ra khi \(u=v=\frac{1}{2}\Leftrightarrow x=-\frac{1}{2};y=\frac{5}{2}\)

Vậy GTNN của A là \(\frac{\sqrt{17}}{2}\)đạt được khi \(x=-\frac{1}{2};y=\frac{5}{2}\)

24 tháng 2 2020

Đặt \(a=2+x;b=y-1\) thì \(ab=\frac{9}{4}\)

Thì \(\sqrt{x^4+4x^3+6x^2+4x+2}=\sqrt{a^4-4a^3+6a^2-4a+2}\)

và \(\sqrt{y^4-8y^3+24y^2-32y+17}=\sqrt{b^4-4b^3+6b^2-4b+2}\) (cái này dùng phương pháp đồng nhất hệ số là xong)

Vậy ta tìm Min \(A=\sqrt{a^4-4a^3+6a^2-4a+2}+\sqrt{b^4-4b^3+6b^2-4b+2}\)

\(=\sqrt{\left(a^4-4a^3+4a^2\right)+2\left(a^2-2a+1\right)}+\sqrt{\left(b^4-4b^3+4b^2\right)+2\left(b^2-2b+1\right)}\)

\(=\sqrt{\left(a^2-2a\right)^2+\left[\sqrt{2}\left(a-1\right)\right]^2}+\sqrt{\left(b^2-2b\right)^2+\left[\sqrt{2}\left(b-1\right)\right]^2}\)

\(\ge\sqrt{\left(a^2+b^2-2a-2b\right)^2+2\left(a+b-2\right)^2}\)

\(\ge\sqrt{\left[\frac{\left(a+b\right)^2}{2}-2\left(a+b\right)\right]^2+2\left(a+b-2\right)^2}\)

\(=\sqrt{\left(\frac{t^2}{2}-2t\right)^2+2\left(t-2\right)^2}\left(t=a+b\ge2\sqrt{ab}=3\right)\)

\(=\sqrt{\frac{1}{4}\left(t-1\right)\left(t-3\right)\left(t^2-4t+5\right)+\frac{17}{4}}\ge\frac{\sqrt{17}}{2}\)

Trình bày hơi lủng củng, sr.

NV
23 tháng 8 2021

Cho ba số thực dương x;y;z thoả mãn \(5\left(x+y+z\right)^2\ge14\left(x^2+y^2+z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24

23 tháng 2 2020

Làm phần min trước, Max để mai:

Ta chứng minh \(P\ge\frac{18}{25}\).

*Nếu x = 0 thì \(y^2=\frac{1}{2}\Rightarrow P=\frac{7}{4}>\frac{18}{25}\)

*Nếu x khác 0. Xét hiệu hai vế ta thu được:

\(\ge0\)

P/s: Nên rút gọn cái biểu thức cuối cùng lại cho nó đẹp và khi đó ta không cần xét 2 trường hợp như trên:D

23 tháng 2 2020

Cách khác đơn giản hơn:

Đặt \(x+y=a;xy=b\Rightarrow a^2\ge4b\)

\(\Rightarrow2a^2-1=5b\) rồi rút thế các kiểu cho nó thành 1 biến là xong:D (em nghĩ vậy thôi chứ chưa thử)

NV
25 tháng 2 2020

\(A=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt \(\left(x+1;y-2\right)=\left(a;b\right)\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b=\frac{5}{4}\)

\(\Rightarrow\frac{a^2+b^2}{2}+\sqrt{2\left(a^2+b^2\right)}\ge\frac{5}{4}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

\(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\) hay \(\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=\frac{5}{2}\end{matrix}\right.\)

7 tháng 4 2015

(x+căn bậc 2 của (2015+x2))(y+căn bậc 2 của(2015+y2)=2015

<=>(x+căn bậc 2 của (2015+x2))(x-căn bậc 2 của (2015+x2))(y+căn bậc 2 của(2015+y2)=2015(x-căn bậc 2 của(2015+x2)

<=>x=y+căn bậc 2 của(2015+x2)-căn bậc 2 của (2015+y2) (1)

Tương tự: y=x+ căn bậc 2 của (2015+y2)-căn bậc 2 của (2015+x2) (2)

Cộng 2 vế của  (1) và (2)

=> x+y=0 <=> y=-x

Thay vào pt ta được:

3x2+8x2+12x2=23 <=> 23x2

<=>x=1 hoặc x=-1

<=>y=-1 hoặc y=1

26 tháng 9 2017

1 +\(\sqrt{x+y+3}\) = \(\sqrt{x}\)\(\sqrt{y}\)

16 tháng 5 2021

ta có x+y=\(\sqrt{10}\)=>(x+y)^2=10

A=(x^4+1)(y^4+1)

=x^4.y^4+1+x^4+y^4+2x^2.y^2-2x^2.y^2

=x^4.y^4+1+(x^2+y^2)^2-2x^y^2=x^4.y^4+1+[(x+y)^2-2xy]

=x^4.y^4+1+(10-2xy)-2x^2.y^2

=x^4.y^4+1+100-40xy+4.x^2.y^2-2x^2.y^2

=x^4.y^4+101-40xy+2.x^2.y^2

=(x^4.y^4-8.x^2.y^2+16)+(10.x^2.y^2-40xy+40)+45

=(x^2.y^2-4)^2+10.(xy-2)^2+45\(\ge\)0

dấu = xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x.y=2\end{matrix}\right.\)

vậy Min A=45

 

 

 

16 tháng 5 2021

\(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x.y=2\end{matrix}\right.\)là nghiệm pt x^2-\(\sqrt{10}\)x+2

=>\(\Delta\)=(-\(\sqrt{10}\))^2-4.2=2>0

=>\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{10}-\sqrt{2}}{2}\\y=\dfrac{\sqrt{10}+\sqrt{2}}{2}\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{10}-\sqrt{2}}{2}\\y=\dfrac{\sqrt{10}+\sqrt{2}}{2}\end{matrix}\right.\)