K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 3 2022

\(2x\left(y-x\right)=a^2>0\Rightarrow y>x\)

Qua \(B_1\) kẻ đường thẳng song song BC cắt \(CC'\) tại D \(\Rightarrow DC_1=y-x\) và \(B_1D=BC=a\)

Áp dụng Pitago ta có:

\(AC_1^2=AC^2+AC_1^2=a^2+y^2\)

\(AB_1^2=AB^2+BB_1^2=a^2+x^2\)

\(B_1C_1^2=B_1D^2+DC_1^2=a^2+\left(y-x\right)^2\)

\(\Rightarrow AB_1^2+B_1C_1^2=2a^2+x^2+\left(y-x\right)^2=2a^2+2x^2+y^2-2xy\)

\(=2a^2+2x^2+y^2-\left(2x^2+a^2\right)=a^2+y^2=AC_1^2\)

\(\Rightarrow\Delta AB_1C_1\) vuông tại \(B_1\)  theo Pitago đảo.

b.

Do \(B_1\) là trung điểm BB' \(\Rightarrow x=\dfrac{BB'}{2}\), mà \(y=2x\Rightarrow y=BB'\Rightarrow C_1\) trùng C' 

Do \(CC',B_1B\) vuông góc mặt đáy \(\Rightarrow\) tam giác ABC là hình chiếu vuông góc của tam giác \(AB_1C_1\) lên (ABC)

Theo công thức diện tích hình chiếu:

\(S_{ABC}=S_{AB_1C_1}.cos\alpha\Rightarrow S_{AB_1C_1}=\dfrac{S_{ABC}}{cos\alpha}=\dfrac{a^2\sqrt{3}}{4cos\alpha}\)

Gọi D là trung điểm AC' (hay \(AC_1\)) và  E là trung điểm AC

\(\Rightarrow\) \(BEDB_1\) là hình chữ nhật \(\Rightarrow B_1D=BE=\dfrac{a\sqrt{3}}{2}\)

\(B_1C'=B_1A=\sqrt{a^2+\left(\dfrac{x}{2}\right)^2}\) nên tam giác \(AB_1C'\) cân tại \(B_1\Rightarrow B_1D\) đồng thời là đường cao

\(\Rightarrow S_{AB_1C_1}=\dfrac{1}{2}B_1D.AC'=\dfrac{a^2\sqrt{3}}{4cos\alpha}\Rightarrow AC'=\dfrac{a^2\sqrt{3}}{2cos\alpha.B_1D}=\dfrac{a}{cos\alpha}\)

\(\Rightarrow AA'=\sqrt{AC'^2-AC^2}=\sqrt{\dfrac{a^2}{cos^2\alpha}-a^2}=a.tan\alpha\)

NV
3 tháng 3 2022

undefined

17 tháng 6 2017

Đáp án C

Gọi M là trung điểm của BC suy ra 

Lại có 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Tam giác đều ABC có diện tích \(S = \frac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

Tam giác đều A'B'C' có diện tích \(S' = \frac{{{a^2}\sqrt 3 }}{4}\)

Thể tích khối chóp cụt

\(V = \frac{1}{3}.HH'.\left( {S + S' + \sqrt {S.S'} } \right) = \frac{1}{3}.h.\left( {{a^2}\sqrt 3  + \frac{{{a^2}\sqrt 3 }}{4} + \sqrt {{a^2}\sqrt 3 .\frac{{{a^2}\sqrt 3 }}{4}} } \right) = \frac{{7{a^2}\sqrt 3 }}{{12}}\)

b) Vì ABC.A'B'C' là khối chóp cụt đều nên (ABC) // (A'B'C')

Mà \(\left( {A{B_1}{C_1}} \right) \subset \left( {ABC} \right) \Rightarrow \left( {A{B_1}{C_1}} \right)//\left( {A'B'C'} \right)\)

Xét tam giác ABC có

B1,C1 tương ứng là trung điểm của AB, AC

\( \Rightarrow \) B1C1 là đường trung bình của tam giác ABC

\( \Rightarrow \) \({B_1}{C_1} = \frac{{BC}}{2}\) và B1C// BC mà \(B'C' = \frac{{BC}}{2}\) và BC // B’C’

\( \Rightarrow \) B1C= B’C’ và B1C// B’C’ \( \Rightarrow \) C1C’B’B1 là hình bình hành

Ta có \(A{B_1} = A'B' = \frac{{AB}}{2},A{B_1}//A'B'\) \( \Rightarrow \) AA’B’B1 là hình bình hành.

\(A{C_1} = A'C' = \frac{{AC}}{2},A{C_1}//A'C'\) \( \Rightarrow \) AA’C’C1 là hình bình hành.

Do đó AB1C1.A'B'C' là một hình lăng trụ

Thể tích hình lăng trụ \(V = HH'.S' = h.\frac{{{a^2}\sqrt 3 }}{4}\)

9 tháng 11 2017

Đáp án A.

Gọi H là trung điểm của AB

12 tháng 11 2019

4 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi I là trung điểm của cạnh B'C'. Theo giả thiết ta có AI ⊥ (A'B'C') và ∠ A A ′ I   =   60 ο . Ta biết rằng hai mặt phẳng (ABC) và (A'B'C') song song với nhau nên khoảng cách giữa hai mặt phẳng chính là khoảng cách AI.

Do đó 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ B′C′ ⊥ AA′

Mà AA′ // BB′ // CC′ nên B’C’ ⊥ BB’

 

Vậy mặt bên BCC’B’ là một hình vuông vì nó là hình thoi có một góc vuông.

19 tháng 3 2016

Từ giả thiết suy ra với mọi O đều có ?

\(\overrightarrow{OG}=\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)\)  và  \(\overrightarrow{OG_1}=\frac{1}{3}\left(\overrightarrow{OA}_1+\overrightarrow{OB_1}+\overrightarrow{OC}_1\right)\)

Mà :

\(\overrightarrow{OG_2=}\frac{1}{3}.\left(\overrightarrow{OGa}+\overrightarrow{OG_b}+\overrightarrow{OG_c}\right)\)

        \(=\frac{1}{3}\left(\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB_1}+\overrightarrow{OC_1}\right)+\frac{1}{3}\left(\overrightarrow{OB}+\overrightarrow{OC_1}+\overrightarrow{OA_1}\right)+\frac{1}{3}\left(\overrightarrow{OC}+\overrightarrow{OA_1}+\overrightarrow{OB_1}\right)\right)\)

        \(=\frac{1}{3}\left(\frac{1}{3}\left(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right)+\frac{2}{3}\left(\overrightarrow{OA_1}+\overrightarrow{OB_1}+\overrightarrow{OC}_1\right)\right)\)

        \(=\frac{1}{3}\overrightarrow{OG}+\frac{2}{3}\overrightarrow{OG_1}\)

Suy ra :

\(3\overrightarrow{OG_2}=\overrightarrow{OG}+2\overrightarrow{OG_1}\)  với mọi O. Điều này có nghĩa là \(G,G_1,G_2\) thẳng hàng => Điều phải chứng minh