K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\),xyz=1  

Cần CM: \(1+\frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge\frac{6}{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}\) 

\(\Leftrightarrow1+\frac{3}{xy+yz+zx}\ge\frac{6}{x+y+z}\) 

Thật vậy \(1+\frac{3}{xy+yz+zx}\ge1+\frac{9}{\left(x+y+z\right)^2}\ge2\sqrt{\frac{9}{x+y+z}}=\frac{6}{x+y+z}\)(đpcm) 

Dấu "=" xảy ra khi a=b=c=1

10 tháng 4 2017

\(\hept{\begin{cases}a+b+c=0\\ab+bc+ca+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=-2\left(ab+bc+ca\right)\\-\left(ab+bc+ca\right)=3\end{cases}}\)

\(\Rightarrow a^2+b^2+c^2=6\)

\(\Rightarrow a^2\le6\)

\(\Leftrightarrow-2\le a\le2\)

 \(\Rightarrow\) a \(\in\){ -2; - 1; 0; 1; 2}

Thế a = - 2 vào hệ ban đầu ta được

\(\Rightarrow\hept{\begin{cases}b+c=2\\-2b+bc-2c+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=1\\c=1\end{cases}}\) 

Tương tự cho các trường hợp còn lại 

11 tháng 4 2017

10000

20 tháng 8 2017

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

20 tháng 8 2017

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

7 tháng 8 2016

\(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{c\left(a-c\right)}\right)^2+\left(\sqrt{c\left(b-c\right)}\right)\le\left(\sqrt{ab}\right)^2\) 

\(\Leftrightarrow c\left(a-c\right)+c\left(b-c\right)\le ab\) 

Thấy: \(c\left(a-c+b-c\right)\)  

\(\Leftrightarrow ac-\left(c^2-cb+c^2\right)\)

\(c< b\Rightarrow ac< ab\) 

Do đó: \(ac-\left(c^2-cb+c^2\right)< ab\) 

Vậy: \(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)

13 tháng 6 2017

 ta cần cm \(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le ab\)

mà theo bunhia \(\left(\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\right)^2\le\left(c+b-c\right)\left(c+a-c\right)=ab\)

4 tháng 10 2017

Ta có :\(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\)

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2007}{ab+bc+ca}\)

Áp dụng bđt Cauchy - Schwarz dạng Engel ta có : 

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)

\(=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{3^2}=1\)( do \(a+b+c\le3\)) (1)

Lại có : \(a^2+b^2+c^2-ab-ac-bc=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

nên \(a^2+b^2+c^2\ge ab+bc+ac\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\Leftrightarrow9\ge3\left(ab+bc+ac\right)\Rightarrow ab+bc+ac\le3\)

\(\Rightarrow\frac{2007}{ab+bc+ac}\ge\frac{2007}{3}=669\)(2)

Từ (1) ; (2) \(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2007}{ab+bc+ca}\ge670\)

Hay \(\frac{1}{a^2+b^2+c^2}+\frac{2009}{ab+bc+ca}\ge670\)(đpcm)