K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

\(\frac{a}{2b+a}+\frac{b}{2c+b}+\frac{c}{2a+c}=\frac{a^2}{2ab+a^2}+\frac{b^2}{2bc+b^2}+\frac{c^2}{2ca+c^2}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+a^2+2bc+b^2+2ca+c^2}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

8 tháng 2 2019

bạn giải thích rõ hơn cho mình về xét dấu = xảy ra đc k?

29 tháng 1 2019

cho a, b, c là các số thực dương thỏa mạn abc=1 chứng minh rằng a/(2b+a) +b/(2c+b)+c/(2a+c)>=1

10 tháng 2 2019

Áp dụng BĐT Cauchy với a ; b ; c dương , ta có :

\(\dfrac{a}{2b+a}+\dfrac{b}{2c+b}+\dfrac{c}{2a+b}=\dfrac{a^2}{2ab+a^2}+\dfrac{b^2}{2bc+b^2}+\dfrac{c^2}{2ac+bc}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy ...

Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)

Thật vậy:

\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)

Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)

\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)

mà \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)

Áp dụng các bđt trên vào bài toán ta có

 ∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)\(\frac{a+b+c}{a+b+c}=1\)

Bất đẳng thức được chứng minh

Dấu "=" xảy ra khi a=b=c=1

28 tháng 2 2020

Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm

10 tháng 7 2021

Áp dụng bất đẳng thức Svacxo ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)

Tương tự : \(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c};\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{a+2b}+\dfrac{3}{b+2c}+\dfrac{3}{c+2a}\)

Dấu = xảy ra khi a=b=c

10 tháng 7 2021

\(=>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)(BĐT Cauchy Schawarz)(1)

tương tự \(=>\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c}\left(2\right)\)

\(=>\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\left(3\right)\)

(1)(2)(3)

\(=>3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

\(=>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\left(dpcm\right)\)