K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 2 2020

Lời giải:

Áp dụng BĐT AM-GM:

$4abc+4abc+\frac{1}{8a^2}+\frac{1}{8b^2}+\frac{1}{8c^2}\geq 5\sqrt[5]{\frac{1}{32}}=\frac{5}{2}(1)$

Áp dụng BĐT Cauchy_Schwarz:

$\frac{7}{8}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq \frac{7}{8}.\frac{9}{a^2+b^2+c^2}\geq \frac{7}{8}.\frac{9}{\frac{3}{4}}=\frac{21}{2}(2)$

Từ $(1);(2)\Rightarrow P\geq 13$

Vậy $P_{\min}=13$ khi $a=b=c=\frac{1}{2}$

13 tháng 8 2020

+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)

+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)

\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)

17 tháng 8 2020

ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)

ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)

thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)

ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)

\(\Leftrightarrow ab+bc+ca\ge3\)

thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)

mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)

từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)

vậy maxT=1 khi a=b=c=1

31 tháng 8 2019

\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)

Tương tự cộng lại quy đồng ta có đpcm 

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

NV
18 tháng 11 2019

\(\Leftrightarrow\sum\frac{2}{a^2+b^2+2}\le\frac{3}{2}\Leftrightarrow\sum\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{3}{2}\)

Ta có: \(\sum\frac{a^2+b^2}{a^2+b^2+2}\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

Nên ta chỉ cần chứng minh \(\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a^2+b^2+c^2+\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+b^2\right)\left(c^2+a^2\right)}+\sqrt{\left(b^2+c^2\right)\left(c^2+a^2\right)}}{a^2+b^2+c^2+3}\ge\frac{3}{2}\)

\(\Leftrightarrow\sum\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\) (1)

\(\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge ac+b^2\)

\(\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}\ge a^2+bc\) ; \(\sqrt{\left(b^2+c^2\right)\left(a^2+c^2\right)}\ge ab+c^2\)

\(\Rightarrow\sum\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge a^2+b^2+c^2+ab+bc+ca\)

\(\Rightarrow\sum\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a+b+c\right)^2=\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}\)

\(\Rightarrow\left(1\right)\) đúng nên ta có đpcm

Dấu "=" xảy ra khi \(a=b=c=1\)

15 tháng 11 2020

1)

\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)

Dấu "=" xảy ra khi a=2

15 tháng 11 2020

2)

\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)

29 tháng 12 2019

Ta co:

\(VT=\Sigma_{cyc}\frac{a}{ca+1}=\Sigma_{cyc}\frac{a}{ca+abc}=\Sigma_{cyc}\frac{1}{c+bc}\)

Xet

\(\Sigma_{cyc}\frac{1}{c+bc}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{c}+\frac{1}{bc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{4}\left(ab+bc+ca+a+b+c\right)\)

bdt can chung minh thanh

\(ab+bc+ca+a+b+c\le2\left(a^2+b^2+c^2\right)\)

Ta lai co:

\(a^2+b^2+c^2\ge ab+bc+ca\)

Gio ta can chung minh:

\(a^2+b^2+c^2\ge a+b+c\)

Ta co hai danh gia:

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(1=\sqrt[3]{abc}\le\frac{a+b+c}{3}\le\frac{\sqrt{3\left(a^2+b^2+c^2\right)}}{3}\Rightarrow a^2+b^2+c^2\ge3\)

Suy ra can chung minh:

\(a^2+b^2+c^2\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2-3\right)\ge0\) (đúng)

Dau '=' xay ra khi \(a=b=c=1\)

29 tháng 12 2019

mn giup voi minh can gap lam

Vũ Minh TuấnBăng Băng 2k6Nguyễn Việt LâmPhạm Lan HươngNguyễn Huy Tú Nguyễn Thị Thùy TrâmNo choice teentthbảo phạmHo Nhat Minh

NV
10 tháng 6 2019

Ta chứng minh \(\frac{a^3}{\left(1-a\right)^2}\ge\frac{4a-1}{4}\) với mọi a thỏa mãn \(0< a< 1\)

\(\Leftrightarrow4a^3-\left(4a-1\right)\left(1-a\right)^2\ge0\)

\(\Leftrightarrow9a^2-6a+1\ge0\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)

Tương tự ta có: \(\frac{b^3}{\left(1-b\right)^2}\ge\frac{4b-1}{4}\); \(\frac{c^3}{\left(1-c\right)^2}\ge\frac{4c-1}{4}\)

Cộng vế với vế:

\(\Rightarrow P\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)

\(\Rightarrow P_{min}=\frac{1}{4}\) khi \(a=b=c=\frac{1}{3}\)