K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

áp dụng bdt cô si 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\)

dấu = xảy ra khi x=y=z

BĐT Bunhiacopxky em chưa học cô ạ

Cô cong cách nào không ạ

AH
Akai Haruma
Giáo viên
1 tháng 6 2020

Nguyễn Thị Nguyệt Ánh:

Vậy thì bạn có thể chứng minh $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$ thông qua BĐT Cô-si:

Áp dụng BĐT Cô-si:

$x+y+z\geq 3\sqrt[3]{xyz}$

$xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}$

Nhân theo vế:

$(x+y+z)(xy+yz+xz)\geq 9xyz$

$\Rightarrow \frac{xy+yz+xz}{xyz}\geq \frac{9}{x+y+z}$
hay $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$

20 tháng 5 2018

Đề bài mik chép thiếu : Hãy tìm GTLN của S = x + y + z 

NV
17 tháng 6 2020

\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)

\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)

\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 6 2020

Áp dụng BĐT Côsi dưới dạng engel, ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9

Dấu "=" xảy ra ⇔ x = y = z

10 tháng 7 2020

dcv_new 

\(\Sigma\frac{a^2}{pab+qca}\ge\frac{\left(a+b+c\right)^2}{\left(p+q\right)\left(ab+bc+ca\right)}\ge\frac{3}{p+q}\)

23 tháng 7 2020

2, ta có \(\sqrt{a}=\sqrt{\frac{a}{x}}\cdot\sqrt{x}\)

vậy ta được \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(\sqrt{\frac{a}{x}}\cdot\sqrt{x}+\sqrt{\frac{b}{y}}\cdot\sqrt{y}+\sqrt{\frac{c}{z}}\cdot\sqrt{z}\right)^2\le\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)=S\)

dấu đẳng thức xảy ra khi \(\sqrt{x}:\sqrt{\frac{a}{x}}=\sqrt{y}:\sqrt{\frac{b}{y}}=\sqrt{z}:\sqrt{\frac{c}{z}}\Leftrightarrow\hept{\begin{cases}\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=1\\\frac{x}{\sqrt{a}}=\frac{y}{\sqrt{b}}=\frac{z}{\sqrt{c}}\end{cases}}\)

\(\Rightarrow x=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};z=\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

vậy min (x+y+z)=\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\)

12 tháng 9 2020

\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)

Đẳng thức xảy ra khi x = y = z = t > 0 

4 tháng 6 2015

đặt a = 2x+y+z ; b = 2y+z+x ; c = 2z+x+y => a+b+c = 4x+4y+4z 
=> a - (a+b+c)/4 = x => x = (3a-b-c)/4 ; tương tự y = (3b-c-a)/4 ; z = (3c-a-b)/4 
thay vào vế trái ta có 
P = (3a-b-c)/4a + (3b-c-a)/4b + (3c-a-b)/4c = 
= 9/4 - (b/4a + c/4a + c/4b + a/4b + a/4c + b/4c) 
= 9/4 - (1/4)(b/a+a/b + c/a+a/c + c/b+b/c) 

Côsi cho từng cặp ta có: b/a+a/b ≥ 2 ; c/a+a/c ≥ 2 ; c/b+b/c ≥ 2 
=> b/a+a/b + c/a+a/c + c/b+b/c ≥ 6 
=> -(1/4)(b/a+a/b +c/a+a/c + c/b+b/c) ≤ -6/4 thay vào P ta có: 
P ≤ 9/4 - 6/4 = 3/4 (đpcm) ; dấu "=" khi a = b = c hay x = y = z 
cách này tuy biến đổi dài nhưng dễ hiểu) 
------------ 
Cách khác: 
P = x/(2x+y+z) -1 + y/(2y+z+x) -1 + z/(2z+x+y) - 1 + 3 
= -(x+y+z)/(2x+y+z) -(x+y+z)/(2y+z+x) -(x+y+z)/(2z+x+y) + 3 
= -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] + 3 
- - - 
Côsi cho 3 số: 
2x+y+z + 2y+z+x + 2z+x+y ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y) 
=> 4(x+y+z) ≥ 3.³√(2x+y+z)(2y+z+x)(2z+x+y) (1*) 
Côsi cho 3 số: 
1/(2x+y+z)+1/(2y+z+x)+1/(2z+x+y) ≥ 3³√1/(2x+y+z)(2y+z+x)(2z+x+y) (2*) 

Lấy (1*) *(2*) ta có: 
4(x+y+z)[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≥ 9 

=> -(x+y+z).[1/(2x+y+z) + 1/(2y+z+x) + 1/(2z+x+y)] ≤ -9/4 
thay vào P ta có: 
P ≤ -9/4 + 3 = 3/4 (đpcm) ; dấu "=" khi x = y = z 

12 tháng 7 2018

Bạn ơi vì sao lại nhân với 9/4 mình tưởng chỉ nhân với 3/4 thôi chứ nhỉ

30 tháng 10 2019

1)

Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c

=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0

Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c

Vậy a=b=c

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Bài 2:

Từ $xyz=1$ suy ra:

\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=yz+xz+xy\)

\(\Leftrightarrow xy+yz+xz-x-y-z=0\)

\(\Leftrightarrow (xy-x-y+1)+yz+xz-z-1=0\)

\(\Leftrightarrow (x-1)(y-1)+yz+xz-z-xyz=0\)

\(\Leftrightarrow (x-1)(y-1)+z(y-1)-xz(y-1)=0\)

\(\Leftrightarrow (y-1)(x-1+z-xz)=0\)

\(\Leftrightarrow (y-1)[(x-1)-z(x-1)]=0\Leftrightarrow (y-1)(x-1)(1-z)=0\)

\(\Rightarrow \left[\begin{matrix} x=1\\ y=1\\ z=1\end{matrix}\right.\)

Nếu $x=1\Rightarrow yz=1$

$A=x^{2018}+2019^y-z^x=1+2019^y-z=1+2019^y-\frac{1}{y}$

Nếu $y=1\Rightarrow xz=1$

$A=x^{2018}+2019-z^x=x^{2018}+2019-\frac{1}{x^x}$

Nếu $z=1\Rightarrow xy=1$

$A=\frac{1}{y^{2018}}+2019^y-1$

Tóm lại với đkđb vẫn chưa tính được giá trị cụ thể của $A$

9 tháng 7 2020

áp dụng bđt Cô -si: x+y+z\(\ge3\sqrt[3]{xyz}\) với 3 số x,y,z không âm

ta có: \(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3\sqrt[3]{\frac{1}{8}}=\frac{3}{2}\)(1)

tương tự: \(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\) (2)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)(3)

cộng (1), (2) và (3) ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge3.\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{9}{2}-\frac{3}{2}-\frac{6}{4}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)