K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=\frac{2018}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ac}-\frac{2017}{a^2+b^2+c^2}\)

\(P\ge2018\left(\frac{4}{a^2+b^2+c^2+ab+bc+ac}\right)-\frac{2017}{a^2+b^2+c^2}\)

\(P\ge\frac{2018.8}{\left(a+b+c\right)^2}-\frac{2017}{a^2+b^2+c^2}=\frac{2018.8}{9}-\frac{2017}{a^2+b^2+c^2}\)

Vì \(9=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2\ge3\)

\(P\ge\frac{2018.8}{9}-\frac{2017}{3}=...\)

P min = ... khi a=b=c = 1

8 tháng 7 2019

\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ac}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Áp dụng BĐT cosi

\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge\frac{3}{4}a\)

Tương tự 

=> \(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{1}{4}\left(a+b+c\right)\)

Lại có \(\left(a+b+c\right)\ge\frac{9}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{9}{1}=9\)

=> \(A\ge\frac{9}{4}\)

MinA=9/4 khi a=b=c=3

1 tháng 7 2017

Ta có  \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.1=3\)  \(\Rightarrow a+b+c\ge\sqrt{3}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{3}}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\\ab+bc+ca=1\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c=\frac{\sqrt{3}}{3}\)

NV
10 tháng 9 2020

\(P=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{2016}{ab+bc+ca}\)

\(P\ge\frac{9}{a^2+b^2+c^2+ab+bc+ca+ab+bc+ca}+\frac{2016}{\frac{1}{3}\left(a+b+c\right)^2}\)

\(P\ge\frac{6057}{\left(a+b+c\right)^2}\ge\frac{6057}{3^2}=673\)

Dấu "=" xảy ra khi \(a=b=c=1\)

23 tháng 8 2020

Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)  (áp dụng Bất Đẳng Thức Cosi)

\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)

\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)

Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)

Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)

Dấu "=" xảy ra khi a=b=c