K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 6

Lời giải:

$a=b+1\Rightarrow a-b=1$

Khi đó:

$(a+b)(a^2+b^2)(a^4+b^4)=(a-b)(a+b)(a^2+b^2)(a^4+b^4)$

$=(a^2-b^2)(a^2+b^2)(a^4+b^4)=(a^4-b^4)(a^4+b^4)=a^8-b^8$

6 tháng 5 2021

Ta có :

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\) ( Bất đẳng thức Bunhiacopski)

Mà lại có \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\) (BĐT ....)

\(\Rightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^2>\frac{1}{8}\cdot1=\frac{1}{8}\)(đpcm)

             KL:.........

29 tháng 7 2020

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}>\frac{1}{2}\)

\(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}>\frac{1}{8}\)( đpcm )

Đẳng thức xảy ra <=> a = b = 1/2 

29 tháng 7 2020

Ta có : a + b > 1 > 0 (1)

Bình phương hai vế : (a + b)2 > 1 => a2 + 2ab + b2 > 1 (2)

Mặt khác (a - b)2 \(\ge\)0 => a2 - 2ab + b2 \(\ge\)0       (3)

Cộng từng vế của (2) hoặc (3) : \(2\left(a^2+b^2\right)>1\)=> a2 + b2 \(\ge\frac{1}{2}\)(4)

Bình phương hai vế của (4) : \(a^4+2a^2b^2+b^4>\frac{1}{4}\)(5)

Mặt khác \(\left(a^2-b^2\right)^2\ge0\)=> a4 + 2a2b2 + b4 \(\ge\)0 (6)

Cộng từng vế (5) và (6) : \(2\left(a^4+b^4\right)>\frac{1}{4}\)=> \(a^4+b^4>\frac{1}{8}\)

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

19 tháng 5 2017

-Schwarz: 1/(a+b)+1/(a+c)+1/(b+c) >/ 9/2(a+b+c)=9/2=4,5>4 -> đpcm 

-ta có VT=4(1-a)(1-b)(1-c)=4(b+c)(1-b)(1-c)=[4(b+c)(1-c)](1-b)

Áp dụng bdt cauchy dạng 4ab </ (a+b)^2 

VT </ (b+c+1-c)^2(1-b)=(b+1)^2(1-b)=(b+1)[(1+b)(1-b)]=(b+1)(1-b^2) </ 1+b = a+2b+c (đpcm)