K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1a)

Đặt \(a^2+a+1=t\Rightarrow a^2+a+2=t+1\)

\(\Rightarrow A=t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12=\left(t-3\right)\left(t+4\right)\)

\(=\left(a^2+a-2\right)\left(a^2+a+5\right)\)

Mà \(a>1\Rightarrow\hept{\begin{cases}a^2+a-2>0\\a^2+a+5>0\end{cases}}\forall a>1\)

Vậy A là hợp số

1b)

Ta có :

\(B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{1006}+1\right)+1=....=\left(2^{1006}-1\right)\left(2^{1006}+1\right)+1\)

\(=2^{2012}-1+1=2^{2012}\)

11 tháng 2 2017

Ta có a2+a+1=0 với a\(\ne1\):

(a-1)(a2+a+1)=0 \(\Rightarrow\)a3-1=0 \(\Rightarrow\)a3=1.

Ta lại có: a2013=a3*671=(a3)671

Do đó:P=a2013+\(\frac{1}{a^{2013}}=\left(a^3\right)^{^{ }671}+\frac{1}{\left(a^3\right)^{671}}=1+1=2\)

11 tháng 2 2017

SAI HOÀN TOÀN

kq=-1.mk thi casio rùi ( bài này trong casio có)

17 tháng 4 2016

Đặt A = \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

Ta có : A+ 3 = \(\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\)

                    = \(\frac{a+b+c}{b+c}+\frac{b+c+a}{c+a}+\frac{c+a+b}{a+b}\) = \(\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{b+a}\right)\)

Thấy giả thiết vào => A+3 = 1 +> A=-2

28 tháng 1 2018

\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)=\(\frac{1}{a+b+c}\)

=> (  ab + bc + ca ) x ( a + b +c ) = abc 

=> ( ab + bc + ca ) x ( a + b ) + ( abc + bcc + cca - abc ) = 0 

=> ( ab + bc + ca ) x ( a + b ) + c2  x ( a + b ) = 0

=> ( a + b ) x ( a + c ) x ( b + c ) = 0

=> trong đó a , b đối nhau khi đó vì n lẻ nên

1/a2013 + 1/b2013 + 1/c2013 = 1/c2013 = 1/c2013 + b 2013 + c2013

28 tháng 1 2018

cảm ơn bn nhé!!!!

11 tháng 8 2016

Từ giả thiết suy ra : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c^2+ac+bc}\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{ab\left(c^2+ac+bc\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(c^2+bc+ac\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\) hoặc \(b+c=0\) hoặc \(a+c=0\)

Nếu a + b = 0 thì c = 2014 thay vào M : 

\(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{a^{2013}+b^{2013}}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}=\frac{\left(a+b\right).A}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}\)

\(=\frac{1}{c^{2013}}=\frac{1}{2014^{2013}}\) (A là một nhân tử trong phân tích a2013 + b2013 thành nhân tử)

Tương tự với các trường hợp còn lại.

Vậy \(M=\frac{1}{2014^{2013}}\) 

27 tháng 1 2020

\(\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\left(1\right)\)

Vì: \(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}>0\)

Và: \(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}>0\)

Nên từ \(\left(1\right)\Rightarrow x=y=z=0\)

\(\Rightarrow D=0\)