K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

a2 + b2 + c2 + 3 = 2(a + b + c)

=> a2 + b2 + c+ 3 = 2a + 2b + 2c

=> a2 - 2a + 1 + b2 - 2b + 1 + c2 - 2c + 1 = 0

=> (a - 1)2 + (b - 1)2 + (c - 1)2 = 0

=> a - 1 = 0; b - 1 = 0; c - 1 = 0

=> a = 1; b = 1; c = 1 (đpcm)

18 tháng 9 2018

Ta có : \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Rightarrow\) \(a^2+b^2+c^2-2a-2b-2c=0\)

\(\Rightarrow\) \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)

\(\Rightarrow\) \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Do Vế Trái không âm 

\(\Rightarrow\) \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\) \(\Rightarrow\) \(\hept{\begin{cases}a=1\\b=1\\c=1\end{cases}}\)

\(\Rightarrow\) \(a=b=c=1\)

\(\Rightarrow\) \(đpcm\)

15 tháng 9 2016

Quy định của hoc24 là chỉ dc dăng 1 bài trong 1 câu hỏi bạn nhé

15 tháng 9 2016

bài 1 :

 Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 
--> a + b + c = 2 

Trong 1 tam giác thì ta có: 
a < b + c 
--> a + a < a + b + c 
--> 2a < 2 
--> a < 1 

Tương tự ta có : b < 1, c < 1 

Suy ra: (1 - a)(1 - b)(1 - c) > 0 
⇔ (1 – b – a + ab)(1 – c) > 0 
⇔ 1 – c – b + bc – a + ac + ab – abc > 0 
⇔ 1 – (a + b + c) + ab + bc + ca > abc 

Nên abc < -1 + ab + bc + ca 
⇔ 2abc < -2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca 
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2 
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2 
⇔ a² + b² + c² + 2abc < 2 

--> đpcm 

\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

=>a=b=c=1

27 tháng 12 2019

Kiểm tra lại đề bài nhé.

Với a = 2; b = 2; c = -1 thỏa mãn đề bài : (a+b+c)^2 = a^2 + b^2 + c^2 

Nhưng không thỏa mãn đẳng thức cần chứng minh.

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

22 tháng 9 2016

     a2+b2+c2+3= 2(a+b+c)

=> a2+b2+c2+3=2a+2b+2c

=> (a2-2a+1) + ( b-2b+1)+ (c2-2c+1)=0

=> (a-1)2+(b-1)2+ (c-1)2=0

=> (a-1)2=(b-1)2=(c-1)2=0

=> a-1=b-1=c-1=0

=> a=b=c=1( đpcm)

NV
10 tháng 10 2020

1.

Ta có: \(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)

\(\Rightarrow VT\le\frac{a}{a+bc\left(b^2+c^2\right)}+\frac{b}{b+ca\left(c^2+a^2\right)}+\frac{c}{c+ab\left(a^2+b^2\right)}\)

\(\Rightarrow VT\le\frac{a^2}{a^2+abc\left(b^2+c^2\right)}+\frac{b^2}{b^2+abc\left(a^2+c^2\right)}+\frac{c^2}{c^2+abc\left(a^2+b^2\right)}\)

\(\Rightarrow VT\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

18 tháng 9 2018

a ) Ta có : \(a+b+c=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+ac+bc\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+ac+bc\right)^2\)

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2a^2bc+2c^2ab\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)+8abc.0\)

\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

Lại có : \(\dfrac{\left(a^2+b^2+c^2\right)^2}{2}=\dfrac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}\)

\(=\dfrac{a^4+b^4+c^4+a^4+b^4+c^4}{2}=\dfrac{2\left(a^4+b^4+c^4\right)}{2}\)

\(=a^4+b^4+c^4\left(đpcm\right)\)

18 tháng 9 2018

b ) \(a+b+c+d=0\)

\(\Leftrightarrow a+b=-\left(c+d\right)\)

\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow\left(a+b\right)^3+\left(c+d\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+d^3+3a^2b+3b^2a+3c^2d+3d^2c=0\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(-a^2b-b^2a-c^2d-d^2c\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[-ab\left(a+b\right)-cd\left(c+d\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[ab\left(c+d\right)-cd\left(c+d\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\left(đpcm\right)\)