K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 3 2023

Lời giải:
Áp dụng BĐT AM-GM:
$P\leq \frac{ab}{2\sqrt{a^2b^2}}=\frac{ab}{2ab}=\frac{1}{2}$

Dấu "=" xảy ra khi $a=b$ (thay vào điều kiện $2b\leq ab+4\Leftrightarrow a^2+4\geq 2a$- cũng luôn đúng)

31 tháng 3 2023

Đề có lẽ là "Tìm maxP" chứ nhỉ?

Vì a,b là các số thực dương nên:

\(P=\dfrac{ab}{a^2+2b^2}=\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{a}}\)

Ta có \(2b\ge ab+4\Rightarrow\dfrac{2b}{a}\ge b+\dfrac{4}{a}\)

Áp dụng BĐT Cauchy ta có \(b+\dfrac{4}{a}\ge4\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\dfrac{2b}{a}\ge4\sqrt{\dfrac{b}{a}}\Leftrightarrow\left(\dfrac{b}{a}-2\sqrt{\dfrac{b}{a}}+1\right)\ge1\)

\(\Leftrightarrow\left(\sqrt{\dfrac{b}{a}}-1\right)^2\ge1\Leftrightarrow\sqrt{\dfrac{b}{a}}-1\ge1\Leftrightarrow\dfrac{b}{a}\ge4\).

Đặt \(x=\dfrac{b}{a}\Rightarrow x\ge4\). Ta có: \(\dfrac{1}{P}=2x+\dfrac{1}{x}=\left(\dfrac{x}{16}+\dfrac{1}{x}\right)+\dfrac{31x}{16}\ge2\sqrt{\dfrac{x}{16}.\dfrac{1}{x}}+\dfrac{15.4}{16}=\dfrac{33}{4}\)

\(\Leftrightarrow P\le\dfrac{4}{33}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{b}{a}=4\\2b=ab+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\a=1\end{matrix}\right.\)

Vậy \(MaxP=\dfrac{4}{33}\).

 

1 tháng 4 2023

mình xin lỗi bạn nhé là max 

NV
28 tháng 3 2023

Áp dụng BĐT Mincopxki:

\(P\ge\sqrt{\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Lại có do \(a;b;c\ge0\) nên:

\(a^2+2b^2\le a^2+2\sqrt{2}ab+2b^2=\left(a+\sqrt{2}b\right)^2\)

\(\Rightarrow\sqrt{a^2+2b^2}\le a+\sqrt{2}b\)

Tương tự và cộng lại:

\(\Rightarrow P\le\left(\sqrt{2}+1\right)\left(a+b+c\right)=\sqrt{2}+1\)

Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị

28 tháng 3 2023

thầy chỉ cho em hiểu rõ hơn dòng 4 với ạ 

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

7 tháng 7 2015

Áp dụng Côsi: 

\(2.\frac{4}{3}.\sqrt{2a+bc}\le\left(\frac{4}{3}\right)^2+2a+bc\)

Tương tự: \(2.\frac{4}{3}\sqrt{2b+ca}\le\frac{16}{9}+2b+ca;2.\frac{4}{3}\sqrt{2c+ab}\le\frac{16}{9}+2c+ab\)

\(\Rightarrow\frac{8}{3}Q\le\frac{16}{3}+2\left(a+b+c\right)+bc+ca+ab=\frac{28}{3}+ab+bc+ca\)

Ta có: \(3\left(ab+bc+ca\right)=2\left(ab+bc+ca\right)+ab+bc+ca\)

\(\le2\left(ab+bc+ca\right)+a^2+b^2+c^2=\left(a+b+c\right)^2=4\)

\(\Rightarrow ab+bc+ca\le\frac{4}{3}\)

\(\Rightarrow\frac{8}{3}Q\le\frac{28}{3}+\frac{4}{3}=\frac{32}{3}\Rightarrow Q\le4\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)

NV
24 tháng 3 2023

\(2ab+6bc+2ac=7abc\Rightarrow\dfrac{6}{a}+\dfrac{2}{b}+\dfrac{2}{c}=7\)

Đặt \(\left(\dfrac{2}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow3x+2y+2z=7\)

\(C=\dfrac{4}{\dfrac{2}{a}+\dfrac{1}{b}}+\dfrac{9}{\dfrac{4}{a}+\dfrac{1}{c}}+\dfrac{4}{\dfrac{1}{b}+\dfrac{1}{c}}=\dfrac{4}{x+y}+\dfrac{9}{2x+z}+\dfrac{4}{y+z}\)

\(C\ge\dfrac{\left(2+3+2\right)^2}{x+y+2x+z+y+z}=\dfrac{49}{7}=7\)

Dấu "=" xảy ra khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(2;1;1\right)\)

NV
16 tháng 4 2022

\(a^2+b⋮ab-1\Rightarrow b\left(a^2+b\right)-a\left(ab-1\right)⋮ab-1\)

\(\Rightarrow a+b^2⋮ab-1\)

Do đó, vai trò của a và b là hoàn toàn như nhau.

TH1: \(a=b\Rightarrow\dfrac{a^2+a}{a^2-1}\in Z\Rightarrow\dfrac{a}{a-1}\in Z\Rightarrow1+\dfrac{1}{a-1}\in Z\)

\(\Rightarrow a=2\Rightarrow a=b=2\)

TH2: \(b>a\Rightarrow b\ge a+1\)

Do \(a^2+b⋮ab-1\Rightarrow a^2+b\ge ab-1\) (nếu \(a< b\) ta sẽ xét với \(a+b^2⋮ab-1\) cho kết quả tương tự nên ko cần TH3 \(a>b\))

\(a^2-1+2\ge ab-b\Rightarrow\left(a-1\right)\left(a+1\right)+2\ge b\left(a-1\right)\)

\(\Rightarrow\left(a-1\right)\left(b-a-1\right)\le2\)

\(\Rightarrow\left(a-1\right)\left(b-a-1\right)=\left\{0;1;2\right\}\)

TH2.1: \(\left(a-1\right)\left(b-a-1\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=a+1\end{matrix}\right.\)

- Với \(a=1\Rightarrow\dfrac{b+1}{b-1}\in Z\Rightarrow1+\dfrac{2}{b-1}\in Z\Rightarrow b=\left\{2;3\right\}\)

\(\Rightarrow\left(a;b\right)=\left(1;2\right);\left(1;3\right)\) (và 2 bộ hoán vị \(\left(2;1\right);\left(3;1\right)\) ứng với \(a>b\), lần sau sẽ hoán vị nghiệm luôn ko giải thích lại)

- Với \(b=a+1\Rightarrow\dfrac{a^2+a+1}{a^2+a-1}\in Z\Rightarrow1+\dfrac{2}{a^2+a-1}\in Z\)

\(\Rightarrow a^2+a-1=\left\{1;2\right\}\Rightarrow a=1\Rightarrow b=2\) giống như trên

TH2.2: \(\left(a-1\right)\left(b-a-1\right)=1\Rightarrow\left\{{}\begin{matrix}a-1=1\\b-a-1=1\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;4\right);\left(4;2\right)\) 

TH2.3: \(\left(a-1\right)\left(b-a-1\right)=2=2.1=1.2\)

\(\Rightarrow\left(a;b\right)=\left(3;5\right);\left(5;3\right);\left(2;5\right);\left(5;2\right)\)

Vậy các bộ số thỏa mãn là: \(\left(1;2\right);\left(2;1\right);\left(1;3\right);\left(3;1\right);\left(2;2\right);\left(2;5\right);\left(5;2\right);\left(3;5\right);\left(5;3\right)\)

 

NV
15 tháng 4 2022

\(\dfrac{a^2}{2ab^2-b^3+1}=m\in Z^+\Rightarrow a^2-2mb^2a.+mb^3-m=0\)

\(\Rightarrow\Delta=4m^2b^4-4mb^3+4m\) là SCP (1)

Ta dễ dàng chứng minh được:

\(4m^2b^4-4mb^3+4m>\left(2mb^2-b-1\right)^2\)

\(\Leftrightarrow4m\left(b^2+1\right)>\left(b+1\right)^2\)

Đúng do: \(2m.2\left(b^2+1\right)\ge2m\left(b+1\right)^2>\left(b+1\right)^2\)

Tương tự, ta cũng có: \(4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)

\(\Leftrightarrow\left(b-1\right)^2+4m\left(b^2-1\right)>0\) (luôn đúng với b>1;m>0)

\(\Rightarrow\left(2mb^2-b-1\right)^2< 4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)

\(\Rightarrow4m^2b^4-4mb^3+4m=\left(2mb^2-b\right)^2\) 

\(\Rightarrow b^2=4m\)

\(\Rightarrow b\) chẵn \(\Rightarrow b=2k\Rightarrow m=k^2\)

Thế vào (1) \(\Rightarrow a^2-8k^4a+8k^5-k^2=0\)

\(\Leftrightarrow\left(a-k\right)\left(a-8k^4+k\right)=0\Rightarrow\left[{}\begin{matrix}a=k\\a=8k^4-k\end{matrix}\right.\)

Vậy nghiệm của pt là: \(\left(a;b\right)=\left(k;2k\right);\left(8k^4-k;2k\right)\) với k nguyên dương

NV
16 tháng 4 2022

Mải làm quên mất, cứ nghĩ là bài yêu cầu tìm nghiệm nguyên của pt

Nếu chỉ cần chứng minh A nguyên dương thì ko cần 3 dòng cuối nữa, đến đoạn \(m=k^2\) là số chính phương là xong rồi

5 tháng 9 2021

Dấu BĐT bị ngược, sửa đề: \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

Đặt \(b^2=x\left(x>0\right)\Rightarrow a+x=2ax\).

Khi đó ta cần chứng minh:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Áp dụng BĐT AM-GM:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\)

\(\le\dfrac{1}{2a^2x+2ax^2}+\dfrac{1}{2ax^2+2a^2x}\)

\(=\dfrac{2}{2ax\left(a+x\right)}\)

\(=\dfrac{1}{ax\left(a+x\right)}\)

\(=\dfrac{1}{2a^2x^2}\)

Ta thấy: \(a+x\ge2\sqrt{ax}\)

\(\Leftrightarrow2ax\ge2\sqrt{ax}\)

\(\Leftrightarrow ax-\sqrt{ax}\ge0\)

\(\Leftrightarrow\sqrt{ax}\left(\sqrt{ax}-1\right)\ge0\)

\(\Leftrightarrow\sqrt{ax}\ge1\)

\(\Rightarrow ax\ge1\)

Khi đó: \(\dfrac{1}{2a^2x^2}\le\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Hay \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

NV
9 tháng 4 2022

Đặt \(\left\{{}\begin{matrix}a-2=x\ge0\\b=y\ge0\end{matrix}\right.\) \(\Rightarrow2y+4=\left(x+2\right)y\Rightarrow xy=4\)

\(P=\dfrac{\sqrt{x^2+2x}}{x+1}+\dfrac{\sqrt{y^2+2y}}{y+1}+\dfrac{1}{x+y+2}\)

\(P=\dfrac{\sqrt{2x\left(x+2\right)}}{\sqrt{2}\left(x+1\right)}+\dfrac{\sqrt{2y\left(y+2\right)}}{\sqrt{2}\left(y+1\right)}+\dfrac{1}{x+1+y+1}\)

\(P\le\dfrac{1}{2\sqrt{2}}\left(\dfrac{3x+2}{x+1}+\dfrac{3y+2}{y+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)

\(P\le\dfrac{1}{2\sqrt{2}}\left(3-\dfrac{1}{x+1}+3-\dfrac{1}{y+1}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)

\(P\le\dfrac{3\sqrt{2}}{2}-\dfrac{\sqrt{2}-1}{4}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}\right)\)

Ta có:

\(\dfrac{1}{x+1}+\dfrac{1}{y+1}=\dfrac{x+y+2}{xy+x+y+1}=\dfrac{x+y+2}{x+y+5}=1-\dfrac{3}{x+y+5}\ge1-\dfrac{3}{2\sqrt{xy}+5}=\dfrac{2}{3}\)

\(\Rightarrow P\le\dfrac{3\sqrt{3}}{2}-\dfrac{\sqrt{2}-1}{4}.\dfrac{2}{3}=...\)

Dấu "=" xảy ra khi \(x=y=2\) hay \(\left(a;b\right)=\left(4;2\right)\)