
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a + b + c = 0
<=> a = -(b + c)
<=> a2 = b2 + 2bc + c2
<=> (a2 - b2 - c2)2 = (2bc)2
<=> a4 + b4 + c4 = 2(a2 b2 + b2 c2 + c2 a2) (1)
Ta có (a2 + b2 + c2)2 = 1
<=> a4 + b4 + c4 + 2(a2 b2 + b2 c2 + c2 a2) = 1
<=> 2(a4 + b4 + c4) = 1
=> M = \(\frac{1}{2}\)

(a+b+c)2=a2+b2+c2+2ac+2bc+2ab
=>02=1+2(ac+bc+ab)
=>ac+bc+ab=-1/2
=>(ac+bc+ab)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab
(ac+bc+ab)2=a2b2+b2c2+a2c2+2abc(a+b+c)
=>(-1/2)2=a2b2+b2c2+a2c2+2abc.0
=>a2b2+b2c2+a2c2=1/4
(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2
(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)
12=a4+b4+c4+2.1/4
1=a4+b4+c4.1/2
a4+b4+c4=1-1/2=1/2

\(\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
mả \(a^2+b^2+c^2=2\Rightarrow2\left(ab+bc+ca\right)=-2\)
\(\Leftrightarrow ab+bc+ca=-1\Leftrightarrow\left(ab+bc+ca\right)^2=1\)
\(\Leftrightarrow a^2b^2+c^2b^2+c^2a^2+2abc\left(a+b+c\right)=1\)
mả \(a+b+c=0\Rightarrow a^2b^2+c^2a^2+b^2c^2=1\)
mặt khác \(\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+c^2b^2+a^2c^2\right)=4\)
\(\Rightarrow a^4+b^4+c^4=2\)

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow ab+bc+ca=-\frac{1}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Lại có:\(a^2+b^2+c^2=1\Rightarrow\left(a^2+b^2+c^2\right)^2=1\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Rightarrow a^4+b^4+c^4+\frac{1}{2}=1\)
\(\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ac+2bc+2ab\)
\(\Rightarrow0^2=2+2\left(ac+bc+ab\right)\)
\(\Rightarrow ac+bc+ab=2:2=1\)
\(\Rightarrow1^2=a^2b^2+b^2c^2+a^2c^2+2a^2bc+2b^2ac+2c^2ab\)
\(\Rightarrow1^2=a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\)
\(\Rightarrow1=a^2b^2+b^2c^2+a^2c^2+2abc.0\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=1\)
Đoạn còn lại bn vào đây xem nha k mk nha
Câu hỏi của Nguyễn Mạnh Tuấn - Toán lớp 8 - Học toán với OnlineMath

a)Ta có: a3 + b3 + c3 = 3abc
=>a3+b3+c3-3abc=1/2(a+b+c)((a-b)2+(b-c)2+(c-a)2) =0 (dễ dàng phân tích được bạn tự làm)
=>Có 2 trường hợp
a+b+c=0(loại vì a+b+c khác 0 ) hoặc (a-b)2+(b-c)2+(c-a)2 = 0
Mà (a-b)2 , (b-c)2 , (c-a)2 >= 0 với mọi a,b,c
=>để (a-b)2 + (b-c)2 + (c-a)2 = 0
=>a=b=c
Thay trường hợp a=b=c vào P
=> (2017 +1)(2017+1)(2017+1)=20183
b)Tương tự a+b+c=0
=> a3 + b3 + c3 = 3abc
=>\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ac}\)
\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
\(A=\frac{3abc}{abc}=3\) Do (a3 +b3 + c3=3abc thay vào)

Ta có: a + b + c = 0
=> ( a + b + c )2 = 0
=> a2 + b2 + c2 + 2ab +2ac+ 2bc = 0
=> 2 + 2( ab + ac + bc ) = 0
=> 2( ab + ac +bc ) = - 2
=> ab + ac + bc = -1
=> ( ab + ac + bc )2 = 1
=> a2b2 + a2c2 + b2c2 + 2a2bc + 2ab2c + 2abc2 = 1
=> a2b2 + a2c2 + b2c2 + 2abc( a + b + c ) = 1
=> a2b2 + a2c2 + b2c2 + 2abc x 0 = 1
=> a2b2 + a2c2 + b2c2 = 1 ( * )
Ta có: a2 + b2 + c2 = 2
=> ( a2 + b2 + c2 )2 = 22
=> a4 + b4 + c4 + 2a2b2 + 2a2c2 + 2b2c2 = 4
=> a4 + b4 + c4 + 2( a2b2 + a2c2 + b2c2 ) = 4
Từ ( * ) => a4 + b4 + c4 + 2 x 1 = 4
=> a4 + b4 + c4 = 4 - 2 = 2
~~~~
Phần còn lại tương tự, cậu tự làm nhóe :3 Chúc cậu học tốt ~~

Ta có
\(a+b+c=0\Leftrightarrow a=-b-c\)
\(\Leftrightarrow a^2=b^2+c^2+2bc\)
\(\Leftrightarrow a^2-b^2-c^2=2bc\)
\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2=4b^2c^2\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Ta lại có
\(a^2+b^2+c^2=2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)
\(\Leftrightarrow2\left(a^4+b^4+c^4\right)=4\)
\(\Leftrightarrow a^4+b^4+c^4=2\)
Câu còn lại tương tự nhé
Ta có : \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow2\left(ab+bc+ca\right)=-2017\)
\(\Rightarrow ab+bc+ca=-\frac{2017}{2}\)
\(\Rightarrow\left(ab+bc+ca\right)^2=1017072,25\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=1017072,25\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^21017072,25\)
Ta có :
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2017^2\)
\(\Rightarrow a^4+b^4+c^4+2.1017072,25=2017^2\)
\(\Rightarrow a^4+b^4+c^4=3051216,75\)
Chúc bạn học tốt !!!