K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

Áp dụng bđt AM-GM cho 3 số dương ta có:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\left(ĐPCM\right)\)

20 tháng 12 2016

AM-GM là cái j thế

28 tháng 6 2017

Sorry mink ko biet lm bài này xin lỗi bn 

28 tháng 6 2017

Tặng thật ko bạn?

NV
26 tháng 2 2020

\(x+y\le z\Rightarrow\frac{z}{x+y}\ge1\)\(VT=3+\frac{x^2}{y^2}+\frac{y^2}{x^2}+\frac{x^2}{z^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}+\frac{z^2}{y^2}\)

\(VT=3+\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)+\left(\frac{x^2}{z^2}+\frac{z^2}{16x^2}\right)+\left(\frac{y^2}{z^2}+\frac{z^2}{16y^2}\right)+\frac{15z^2}{16}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)

\(VT\ge3+2\sqrt{\frac{x^2y^2}{x^2y^2}}+2\sqrt{\frac{x^2z^2}{16x^2z^2}}+2\sqrt{\frac{y^2z^2}{16y^2z^2}}+\frac{15z^2}{32}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)

\(VT\ge3+2+\frac{1}{2}+\frac{1}{2}+\frac{15z^2}{32}\left(\frac{4}{x+y}\right)^2\)

\(VT\ge6+\frac{15}{2}\left(\frac{z}{x+y}\right)^2\ge6+\frac{15}{2}=\frac{27}{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{z}{2}\)

11 tháng 2 2021

Áp dụng bđt AM-GM ta có :

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\) (do x+y+z=2) 

Vậy ....

11 tháng 2 2021

Áp dụng bđt Cô-si vào các số x,y,z dương:

\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{y+z}\cdot\dfrac{y+z}{4}}=x\) 

Chứng minh tương tự :\(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\) , \(\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{1}{2}\left(x+y+z\right)\ge x+y+z\) 

\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{1}{2}\left(x+y+z\right)=1\) 

Dấu bằng xảy ra của cả 2 cách là x=y=z=\(\dfrac{2}{3}\)

24 tháng 5 2022

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)