K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 6 2020

\(0\le x;y;z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)

\(\Leftrightarrow8+2\left(xy+yz+zx\right)-4\left(x+y+z\right)-xyz\ge0\)

\(\Leftrightarrow2\left(xy+yz+zx\right)\ge4+xyz\ge4\)

\(\Rightarrow xy+yz+zx\ge2\)

\(\Rightarrow Q=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le9-2.2=5\)

\(Q_{max}=5\) khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và hoán vị

4 tháng 6 2020

\(A=x^2+y^2+z^2\le\left(x+y+z\right)^2=9\)

gtln của A = 9

Với  \(x=y=z=1\)

easy không ? =)

Có 0 <= x,y,z      =>   xyz >= 0                           

Có x,y,z <=2       => (2-x)(2-y)(2-z)>=0        =>  8 - 4(x+y+z) + 2(xy+yz+zx) -xyz >=0

Từ đó => 8 - 4(a+b+c) +2(ab+bc+ca)>=0

=> 8 - 4(a+b+c) + (a+b+c)^2 >= a^2+b^2+c^2

=> 8 -4.3 +3^2 >=A   (vì x+y+z=3)

=> 5>= A

Dấu "=" xảy ra khi x=2,y=1,z=0

Vậy Max A =5 khi x=2,y=1,z=0

19 tháng 5 2018

Áp dụng BĐT AM-GM cho 3 số dương a,b,c:

\(x^3+1+1\ge3\sqrt[3]{x^3.1.1}=3x\left(1\right)\)

Hoàn toàn tương tự, ta đc: \(y^3+1+1\ge3y\left(2\right)\)

Và: \(z^3+1+1\ge3z\left(3\right)\)

Cộng (1)(2)(3) VTV: \(Q+6\ge3\left(x+y+x\right)=3.3=9\)

\(\Leftrightarrow Q\ge9-6=3\Rightarrow Q_{Min}=3\)

Dấu "=" xảy ra khi x=y=z=1

31 tháng 12 2021

\(c,P=\dfrac{x^2-x^2+8xy-16y^2}{x^2+4y^2}=\dfrac{8\left(\dfrac{x}{y}\right)-16}{\left(\dfrac{x}{y}\right)^2+4}\)

Đặt \(\dfrac{x}{y}=t\)

\(\Leftrightarrow P=\dfrac{8t-16}{t^2+4}\Leftrightarrow Pt^2+4P=8t-16\\ \Leftrightarrow Pt^2-8t+4P+16=0\)

Với \(P=0\Leftrightarrow t=2\)

Với \(P\ne0\Leftrightarrow\Delta'=16-P\left(4P+16\right)\ge0\)

\(\Leftrightarrow-P^2-4P+4\ge0\Leftrightarrow-2-2\sqrt{2}\le P\le-2+2\sqrt{2}\)

Vậy \(P_{max}=-2+2\sqrt{2}\Leftrightarrow t=\dfrac{4}{P}=\dfrac{4}{-2+2\sqrt{2}}=2+\sqrt{2}\)

\(\Leftrightarrow\dfrac{x}{y}=2+2\sqrt{2}\)

Bài a hình như sai đề rồi bạn.

undefined

19 tháng 10 2015

\(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

=> \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)

Hai cái còn lại tương tự

=>  A \(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{1}{x+y+z}\cdot\frac{x+y+z}{xyz}=1\)

Vậy MAx A = 1 tại x = y = z = 1 

29 tháng 2 2020

Áp dụng BĐT Bunhiacopski ta có:

\(\frac{x}{x^3+y^2+z}=\frac{x\left(\frac{1}{x}+1+z\right)}{\left(x^3+y^2+z\right)\left(\frac{1}{x}+1+z\right)}\le\frac{1+x+xz}{\left(x+y+z\right)^2}=\frac{1+x+xz}{9}\)

Tương tự rồi cộng lại ta được:

\(T\le\frac{3+x+y+z+xy+yz+zx}{9}=\frac{6+xy+yz+zx}{9}\le\frac{6+\frac{\left(x+y+z\right)^2}{3}}{9}=1\)

Dấu "=" xảy ra tại \(x=y=z=1\)

8 tháng 10 2019

Câu 2, Do 0<x,y,z<=1 nên ta có:

\(\hept{\begin{cases}\left(x-1\right)\left(y-1\right)\ge0\\\left(y-1\right)\left(z-1\right)\ge0\\\left(z-1\right)\left(x-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}xy+1\ge x+y\\yz+1\ge y+z\\xz+1\ge x+z\end{cases}}}\) 

Thay vào VT ta có:

\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)(1)

Do x,y,z <= 1 nên x+y+z <=3 nên \(\frac{3}{x+y+z}\ge\frac{3}{3}=1\)(2)

Từ (1),(2) -> dpcm

9 tháng 10 2019

1/ Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\)

Khi đó \(3=a+b+c\le3a\Rightarrow1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)

Ta có:

\(LHS=a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)

\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)

\(=9a^2-27a+27=9\left(a-1\right)\left(a-2\right)+9\le9\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị.

P/s: Is that true?