K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)

Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)

=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)

B)

Do 1 lẻ , \(2q^2\) chẵn nên p lẻ

p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)

p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4

\(q^2\):2 =>q:2 =>q=2 

\(q^2\)=2.2\(^2\)+1=9=>q=3

 Chắc đúng vì hôm trước cô mik giải thik v 
26 tháng 11 2021

a, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)

=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)\(\dfrac{n\left(n+1\right)}{2}\)

=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)

đpcm

NV
7 tháng 4 2022

Trước hết ta dùng quy tắc tổ hợp chứng minh điều này: \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\) luôn luôn là 1 số nguyên dương 

Giả sử có \(n^2\) người, ta muốn chia họ vào n nhóm khác nhau, mỗi nhóm có đúng n người. Thứ tự của các nhóm và thứ tự mỗi người trong nhóm không quan trọng.

Xếp vị trí \(n^2\) người, có \(\left(n^2\right)!\) cách

Do trong các nhóm, vị trí mỗi người là không quan trọng nên mỗi nhóm bị lặp lại \(n!\) lần cách xếp (là hoán vị của n người trong nhóm). Như vậy, với n nhóm ta đã bị lặp lại: \(n!.n!...n!=\left(n!\right)^n\) lần xếp

Do vị trí của mỗi nhóm là không quan trọng, do đó khi xếp ta đã lặp lại thêm \(n!\) lần (là hoán vị của các nhóm với nhau)

Tổng cộng, ta đã lặp: \(\left(n!\right)^n.n!=\left(n!\right)^{n+1}\) lần xếp

Do đó, số cách xếp thực sự là: \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\)

Số cách xếp vị trí hiển nhiên phải là 1 số nguyên dương, do đó, \(\dfrac{\left(n^2\right)!}{\left(n!\right)^{n+1}}\) cũng phải là 1 số nguyên dương

\(\Rightarrow\left(n^2\right)!=k.\left(n!\right)^{n+1}\) với k là số nguyên dương

Để \(\left(n!\right)^n⋮\left(n^2-1\right)!\Rightarrow\left(n!\right)^n=m.\left(n^2-1\right)!\) với m nguyên dương

\(\Rightarrow\left(n!\right)^n=m.\dfrac{\left(n^2\right)!}{n^2}=m.\dfrac{k.\left(n!\right)^{n+1}}{n^2}\)

\(\Rightarrow n!.k.m=n^2\)

\(\Rightarrow n=\left(n-1\right)!.k.m\ge\left(n-2\right)\left(n-1\right).k.m\ge\left(n-2\right)\left(n-1\right)\)

\(\Rightarrow n^2-4n+2\le0\)

\(\Rightarrow n\le2+\sqrt{2}\Rightarrow n=\left\{1;2;3\right\}\)

Thử lại chỉ có \(n=1\) thỏa mãn

Vậy \(n=1\) là số nguyên dương duy nhất thỏa mãn yêu cầu

7 tháng 4 2022

Em cx ms nghĩ được 1 phần thôi ạ ; em dùng LTE ạ k biết có đúng k ? 

Với mỗi số nguyên tố p và số nguyên dương q kí hiệu \(v_p\left(q\right)\) là số mũ đúng của p trong phân tích tiêu chuẩn ra thừa số nguyên tố của \(q!\)

C/m : n = 4 và n = p là số nguyên tố thì (n!)^n \(⋮̸\) \(\left(n^2-1\right)!\)

Thật vậy ; n = 4 thì \(v_2\left(4!\right)^4=4v_2\left(24\right)=12>11=v_2\left(4^2-1\right)!\)  

=>  (n!)^n \(⋮̸\) \(\left(n^2-1\right)!\) 

CMTT với n = p 

Tiếp theo ; ta c/m : n \(\ne4\) và \(n\ne p\) thì \(\left(n!\right)^n⋮\left(n^2-1\right)!\)

(Đoạn này e chưa ra) 

12 tháng 6 2017

tìm tất cả các số nguyên dương n sao cho? | Yahoo Hỏi & Đáp

16 tháng 6 2017

ko phải là chia heetscho n+11 mà chia hết cho 11 

yahoo ko đúng đề bài

25 tháng 10 2016

t​a có: xy+3y-y=6

=> xy+2y=6

=> y(x+2)=6

vì x,y nguyên nên y,(x+2) là các ước của 6

ta có bảng sau

x+21-12-23-36-6
y6-63-32-21-1
x-1-30-41-54-8
25 tháng 10 2016

xy+3y-y=6

xy+y(3-1)=6

xy+y2=6

y(x+2)=6

lập bảng

x+223-2-3
y32-3-2
x01-4-5

vậy với các cặp x,y thỏa mãn là:

nếu y=3 thì x=0;nếu y=2 thì x=1;nếu y=-2 thì x=-4;nếu y=-3 thì x=-5

1 tháng 9 2017

để n^2 +2002 là số chính phương 
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0) 
=> a^2 -n^2 =2002 
=> (a-n)(a+n) =2002 
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2 
mà a-n -(a+n) =-2n chia hết cho 2 
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2 
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4 
=> vô lý 

1 tháng 9 2017

Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.