K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2017

Theo đề ta có :

\(\frac{b}{a-c}=\frac{a+b}{c}=\frac{a}{b}\)

* Đầu tiên, ta xét

\(\frac{b}{a-c}=\frac{a}{b}\):

\(\Rightarrow b^2=a\left(a-c\right)\) \(=a^2-ac\)

\(\Rightarrow a^2-b^2=ac\)(1)

* Xét  \(\frac{a+b}{c}=\frac{a}{b}\)

\(\Rightarrow\left(a+b\right)b=ac\)

. Từ (1) ta thay \(ac=a^2-b^2\):

\(\Rightarrow\)\(\left(a+b\right)b=a^2-b^2\)

\(\Rightarrow\left(a+b\right)b=\left(a+b\right)\left(a-b\right)\)

\(\Rightarrow b=a-b\Rightarrow a=b+b=2b\)(2)

* Xét \(\frac{b}{a-c}=\frac{a+b}{c}\):

\(\Rightarrow bc=\left(a-c\right)\left(a+b\right)\)(với a = 2b)

\(\Rightarrow bc=\left(2b-c\right)\left(2b+b\right)\)

\(\Rightarrow bc=\left(2b-c\right).3b\)

\(\Rightarrow\frac{bc}{b}=\frac{\left(2b-c\right).3b}{b}\)

\(\Rightarrow c=\left(2b-c\right).3\)

\(\Rightarrow c=6b-3c\)

\(\Rightarrow6b=c+3c=4c\)(3)

Từ (2) và  (3) \(\Rightarrow\)ta có :

\(a=2b\) và \(6b=4c\)

\(\Rightarrow\frac{a}{8}=\frac{b}{4}\)và \(\frac{b}{4}=\frac{c}{6}\)

\(\Rightarrow\frac{a}{8}=\frac{b}{4}=\frac{c}{6}\)(đpcm)

4 tháng 9 2017

\(\frac{b}{a-c}=\frac{a+b}{c}=\frac{a}{b}=\frac{b+\left(a+b\right)+a}{a-c+c+b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\frac{a}{b}=2\Leftrightarrow a=2b;\frac{a+b}{c}=2\Leftrightarrow a+b=2c\Leftrightarrow2b+b=2c\Leftrightarrow3b=2c\)

Ta có: \(\frac{a}{8}=\frac{2b}{8}=\frac{b}{4};\frac{c}{6}=\frac{2c}{12}=\frac{3b}{12}=\frac{b}{4}\)

=> \(\frac{a}{8}=\frac{b}{4}=\frac{c}{6}\)

+) Do a + b + c> a + b \(\Rightarrow\frac{a}{a+b}>\frac{a}{a+b+c}\)

Tương tự \(\frac{b}{b+c}>\frac{b}{a+b+c},\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)(1)

Lại có a < a + b \(\Rightarrow\frac{a}{a+b}< 1\Rightarrow\frac{a+c}{a+b+c}>\frac{a}{a+b}\)

Tương tự \(\frac{b}{b+c}< \frac{b+a}{a+b+c},\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)(2)

Từ (1) và (2) => 1<M<2 => M không phải là số nguyên

16 tháng 12 2017

Vì a,b,c dương, ta có:

\(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\) (*)

Lại có: \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}=\frac{a+b-b}{a+b}+\frac{b+c-c}{b+c}+\frac{c+a-a}{c+a}=3-\left(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}\right)\)

Chứng minh tương tự (*) ta có: \(\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{c+a}>1\)

\(\Rightarrow M< 3-1=2\) (**)

Từ (*) và (**) => 1 < M < 2 => đpcm

23 tháng 6 2017

mình không viết phân số được nên bạn thông cảm nha!

a) 1/2 + 2/3 + 3/4 + 4/5 < 44

=> 363/140 < 44

=> 363/140 < 6160/140

=> 363 < 6160

14 tháng 6 2017

sai đề nhé ở đây, min nó là 16 mà 6 căn 6=14 thôi, mà cái điểm rơi cũng ngộ nữa :))

18 tháng 6 2017

Nếu bạn đã nói sai thì cho mình giải thử nhé!

Áp dụng BĐT Bunhiacopxky - Cauchy - Schwarz, ta có: 

\(\left(ax+by+cz\right)^2\le\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)\(\Rightarrow\sqrt{a^2+b^2+c^2}\cdot\sqrt{x^2+y^2+z^2}\ge ax+by+cz\)(với a, b, c, x, y, z là những số dương)

\(\Rightarrow\sqrt{2+18+4}\cdot\sqrt{\frac{8}{a^2}+\frac{9b^2}{2}+\frac{c^2a^2}{4}}\ge\sqrt{2}\cdot\frac{2\sqrt{2}}{a}+3\sqrt{2}\cdot\frac{3b}{\sqrt{2}}+2\cdot\frac{ca}{2}\)

\(\Leftrightarrow\sqrt{24}\cdot\sqrt{\frac{8}{a^2}+\frac{9b^2}{2}+\frac{c^2a^2}{4}}\ge\frac{4}{a}+9b+ca\)(1)

Tương tự ta có: \(\sqrt{24}.\sqrt{\frac{8}{b^2}+\frac{9c^2}{2}+\frac{a^2b^2}{4}}\ge\frac{4}{b}+9c+ab\)(2)

                           \(\sqrt{24}\cdot\sqrt{\frac{8}{c^2}+\frac{9a^2}{2}+\frac{b^2c^2}{4}}\ge\frac{4}{c}+9a+bc\)(3)

Cộng vế theo vế (1), (2) và (3) ta được: \(\sqrt{24}\cdot\left(VT\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}+9\left(a+b+c\right)+ab+bc+ca\)

\(=\left(\frac{4}{a}+a\right)+\left(\frac{4}{b}+b\right)+\left(\frac{4}{c}+c\right)+\left(2a+bc\right)+\left(2b+ca\right)+\left(2c+ab\right)\)\(+6\left(a+b+c\right)\)\(\ge2\sqrt{\frac{4}{a}\cdot a}+2\sqrt{\frac{4}{b}\cdot b}+2\sqrt{\frac{4}{c}\cdot c}+2\sqrt{2abc}+2\sqrt{2abc}+2\sqrt{2abc}\)\(+6\left(a+b+c\right)\)\(=12+6\left(a+b+c+\sqrt{2abc}\right)\ge12+6\cdot10=72\)

\(\Rightarrow VT\ge\frac{72}{\sqrt{24}}=6\sqrt{6}\)

Dấu ''='' xảy ra khi: \(\hept{\begin{cases}a+b+c+\sqrt{2abc}=10\\VT=6\sqrt{6}\end{cases}\Leftrightarrow a=b=c=2}\)

Vậy ta được ĐPCM

1 tháng 4 2019

Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{a-c}{\left(a-b\right)\left(a-c\right)}-\frac{a-b}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)Chứng minh tương tự,ta có:\(\hept{\begin{cases}\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\\\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\left(3\right)\end{cases}}\)

Từ (1);(2);(3) suy ra:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)

\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)

\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^{đpcm}\)

18 tháng 3 2015

xet tam giác OBC có OB=OC=BC suy ra tam giác OBC đều suy ra CBA=60 độ

5 tháng 3 2018

Ta có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a+b+c}{a+b+c}\)

\(\Rightarrow M>1\) (1)

Ta có:

\(\frac{a}{a+b}< 1\Rightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< 1\Rightarrow\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< 1\Rightarrow\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}\)

\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}\)

\(\Rightarrow M< 2\) (2)

Từ (1) và (2) => 1 < M < 2

=> M không phải là một số nguyên dương (đpcm)

5 tháng 3 2018

CM :        1 < M < 2 

15 tháng 3 2017

Ta có: \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

           \(\frac{b}{b+c+d}>\frac{b}{a+d+c+d}\)

            \(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

             \(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+b+a}+\frac{d}{d+a+b}< \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 1\)    (1)

Lại có: \(\frac{a}{a+b+c}< \frac{a+c}{a+b+c+d}\)

           \(\frac{b}{b+c+d}< \frac{b+d}{a+b+c+d}\)

            \(\frac{c}{c+d+a}< \frac{c+a}{a+b+c+d}\)

            \(\frac{d}{d+a+b}< \frac{d+b}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+b+c+d}+\frac{b+d}{a+b+c+d}+\frac{c+a}{a+b+c+d}+\frac{d+b}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{2a+2b+2c+2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)        (2)

Từ (1)(2) => \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)   (đpcm)