K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2

Ta thấy

\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2zx}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x^2+2xy+y^2+2yz+z^2+2zx}\) 

(áp dụng BĐT \(\dfrac{a^2}{m}+\dfrac{b^2}{n}+\dfrac{c^2}{p}\ge\dfrac{\left(a+b+c\right)^2}{m+n+p}\) với \(a,b,c,m,n,p>0\))

\(=1\) (dùng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\))

 Dấu "=" xảy ra \(\Leftrightarrow\dfrac{x}{x^2+2xy}=\dfrac{y}{y^2+2yz}=\dfrac{z}{z^2+2zx}\)

\(\Leftrightarrow\dfrac{1}{x+2y}=\dfrac{1}{y+2z}=\dfrac{1}{z+2x}\)

\(\Leftrightarrow x+2y=y+2z=z+2x\)

\(\Leftrightarrow x=y=z\)

Vậy ta có đpcm. Dấu "=" xảy ra khi \(x=y=z\)

NV
31 tháng 12 2021

\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\) 

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)

NV
22 tháng 12 2022

Đặt vế trái của BĐT cần chứng minh là P

Ta có:

\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)

\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y\)

10 tháng 6 2023

Ta cần chứng minh: 

\(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\left(1\right)\left(a,b>0\right)\)

\(\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{a+b}{ab}\\ \Leftrightarrow4ab\le\left(a+b\right)^2\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)

\(DBXR\Leftrightarrow a=b\)

Do các phép biến đổi tương đương nên (1) luôn đúng

Áp dụng (1), ta có:

\(\dfrac{1}{2x+y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}\left[\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\right]=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Chứng minh tương tự, ta được:

\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)

Cộng từng vế BĐT, ta được:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)Hay \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\left(đpcm\right)\)

\(DBXR\Leftrightarrow x=y=z=\dfrac{3}{4}\)

10 tháng 6 2023

thank

17 tháng 7 2021

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

NV
18 tháng 9 2021

\(\dfrac{1}{2x+1}+\dfrac{\left(\dfrac{1}{3}\right)^2}{1}\ge\dfrac{\left(1+\dfrac{1}{3}\right)^2}{2x+1+1}=\dfrac{8}{9}\left(\dfrac{1}{x+1}\right)\)

Tương tự: \(\dfrac{1}{2y+1}+\dfrac{1}{9}\ge\dfrac{8}{9}.\dfrac{1}{y+1}\) ; \(\dfrac{1}{2z+1}+\dfrac{1}{9}\ge\dfrac{8}{9}.\dfrac{1}{z+1}\)

Cộng vế:

\(VT+\dfrac{1}{3}\ge\dfrac{8}{9}\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\ge\dfrac{4}{3}\)

\(\Rightarrow VT\ge1\)

13 tháng 8 2021

Bổ đề:\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\Leftrightarrow\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

Ta có:\(\dfrac{1}{2x+y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{4}.\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\)

Tương tự ta có:\(\dfrac{1}{2y+z+x}\le\dfrac{1}{4}.\dfrac{1}{4}\left(\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)\)

                         \(\dfrac{1}{2z+x+y}\le\dfrac{1}{4}.\dfrac{1}{4}\left(\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}\right)\)

Cộng vế với vế ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{2y+z+x}+\dfrac{1}{2z+x+y}\le\dfrac{1}{16}\left[4\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\right]=\dfrac{1}{16}.4.4=1\)

Dấu "=" xảy ra ⇔ \(x=y=z=\dfrac{3}{4}\)

12 tháng 4 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xy+xz}=\dfrac{4}{x\left(y+z\right)}\)(1)

Áp dụng bất đẳng thức AM-GM ta có :

\(x\left(y+z\right)\le\dfrac{\left(x+y+z\right)^2}{4}=4\)=> \(\dfrac{1}{x\left(y+z\right)}\ge\dfrac{1}{4}\)=> \(\dfrac{4}{x\left(y+z\right)}\ge1\)(2)

Từ (1) và (2) => \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge\dfrac{4}{x\left(y+z\right)}\ge1\)=> \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)(đpcm)

Đẳng thức xảy ra <=> x = 2 ; y = z = 1

1 tháng 9 2021

Cũng là áp dụng BĐT Cosi nhưng còn cách dễ hơn nhiều

NV
2 tháng 4 2021

\(VT\le\dfrac{x}{2x+2y+2}+\dfrac{y}{2yz+2z+2}+\dfrac{z}{2z+2x+2}\)

Nên ta chỉ cần chứng minh: \(\dfrac{x}{x+y+1}+\dfrac{y}{y+z+1}+\dfrac{z}{z+x+1}\le1\)

\(\Leftrightarrow\dfrac{y+1}{x+y+1}+\dfrac{z+1}{y+z+1}+\dfrac{x+1}{z+x+1}\ge2\)

Thật vậy, ta có:

\(VT=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(z+x+1\right)}+\dfrac{\left(y+1\right)^2}{\left(y+1\right)\left(x+y+1\right)}+\dfrac{\left(z+1\right)^2}{\left(z+1\right)\left(y+z+1\right)}\)

\(VT\ge\dfrac{\left(x+y+z+3\right)^2}{\left(x^2+y^2+z^2\right)+3\left(x+y+z\right)+xy+yz+zx+3}\)

\(VT\ge\dfrac{6\left(x+y+z\right)+2\left(xy+yz+zx\right)+12}{3\left(x+y+z\right)+xy+yz+zx+6}=2\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)