K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2023

\(a,b,c>0;abc=1000\)

\(P=\sum\dfrac{a}{b^4+c^4+1000a}\le\sum\dfrac{a}{bc\left(b^2+c^2\right)+a^2bc}=\sum\dfrac{a^2}{abc\left(a^2+b^2+c^2\right)}=\dfrac{\left(a^2+b^2+c^2\right)}{1000\left(a^2+b^2+c^2\right)}=\dfrac{1}{1000}\)

P đạt GTLN là 1/1000 khi \(a=b=c=10\)

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

1 tháng 2 2021

Ta có: a + b + c = 0

\(\Rightarrow\) (a + b + c)2 = 0

\(\Leftrightarrow\) a2 + b2 + c2 + 2ab + 2bc + 2ac = 0

\(\Leftrightarrow\) 2009 + 2(ab + bc + ac) = 0

\(\Leftrightarrow\) ab + bc + ac = \(\dfrac{-2009}{2}\)

\(\Leftrightarrow\) (ab + bc + ac)2 = \(\left(\dfrac{-2009}{2}\right)^2\)

\(\Leftrightarrow\) a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\left(\dfrac{-2009}{2}\right)^2\)

\(\Leftrightarrow\) a2b2 + b2c2 + c2a2 = \(\left(\dfrac{-2009}{2}\right)^2\)    (Vì a + b + c = 0)

Lại có: a2 + b2 + c2 = 2009

\(\Rightarrow\) (a2 + b2 + c2)2 = 20092

\(\Leftrightarrow\) a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 20092

\(\Leftrightarrow\) a4 + b4 + c4 + 2.\(\dfrac{2009^2}{4}\) = 20092

\(\Leftrightarrow\) a4 + b4 + c4 = 20092 - \(\dfrac{2009^2}{2}\) = 2018040,5

Chúc bn học tốt!

27 tháng 9 2023

Ta có \(a^4+b^4\ge2a^2.b^2\) (Bất đẳng thức Cô si với \(a^2;b^2\ge0\) )
Tương tự \(b^4+c^4\ge2b^2.c^2;a^4+c^4\ge2a^2.c^2\)
Do đó: \(a^4+b^4+c^4\ge\dfrac{2a^2b^2+2b^2c^2+2a^2c^2}{2}=a^2b^2+b^2c^2+a^2c^2\)(1)
Ta lại có:\(a^2b^2+b^2c^2\ge2ab^2c;b^2c^2+a^2c^2\ge2abc^2;a^2c^2+a^2b^2\ge2a^2bc\)
Nên\(a^2b^2+b^2c^2+a^2c^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)=3abc\left(a+b+c=3,gt\right)\)
(1);(2) => \(a^4+b^4+c^4\ge3abc\) ;đẳng thức xảy ra khi a = b = c = 1 (*)
Giả sử: \(a^3+b^3+c^3\ge3abc\\ \Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\ge0\\ \Leftrightarrow\left(a+b+c\right)^3-3ab\left(a+b+c\right)-3c\left(a+b\right)\left(a+b+c\right)\ge0\\ \Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-ab-bc-ac\right]\ge0\\2.3\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\\ \Leftrightarrow3\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\ge0\\\Leftrightarrow3\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)
Đúng mới mọi a,b,c ϵR 
Vậy \(a^3+b^3+c^3\ge3abc\) và đẳng thức xảy ra khi a=b=c=(a+b+c)/3 =1(**)
Ta lại có \(a^4\ge a^3;b^4\ge b^3;c^4\ge c^3\) mà a+b+c = 3
Nên \(a^4+b^4+c^4>a^3+b^3+c^3\) (***)
Từ (*);(**);(***) ta có điều phải chứng minh và đẳng thức xảy ra khi a= b=c=1
 

18 tháng 4

Tôi có cách chứng minh bằng đồng bậc hóa bất đẳng thức như sau:

ta sẽ chứng minh:

\(3\left(a^4+b^4+c^4\right)>=\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
<=> \(2\left(a^4+b^4+c^4\right)>=ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)

mà ta có theo bất đẳng thức AMGM \(a^4+b^4>=\dfrac{\left(a^2+b^2\right)^2}{2}>=\dfrac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)
làm tương tự rồi cộng lại, ta có đpcm.

26 tháng 11 2018

Chọn A.

Từ giả thiết suy ra: a > b và a > c do đó góc A là góc lớn nhất

Khi đó: a4 = b4 +c4 < a2b2 + a2c2

Suy ra a2 < b2 + c2

Mặt khác theo định lí côsin ta có

 do đó 

Vậy tam giác ABC nhọn.

18 tháng 11 2021

C

18 tháng 11 2021

C

 

NV
5 tháng 7 2021

Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\)  thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)

https://olm.vn/hoi-dap/detail/108617134952.html

Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo

 

Áp dụng BĐT Cauchy ta có:

\(a^4+a^4+b^4+c^4\ge4\sqrt[4]{a^4.a^4.b^4.c^4}=4a^2bc\)

Tương tự ta cũng có:

\(b^4+b^4+c^4+d^4\ge4\sqrt[4]{b^4.b^4.c^4.d^4}=4b^2cd\)

\(c^4+c^4+d^4+a^4\ge4\sqrt[4]{c^4.c^4.d^4.a^4}=4c^2da\)

\(d^4+d^4+a^4+b^4\ge4\sqrt[4]{d^4.d^4.a^4.b^4}=4d^2ab\)

Cộng theo vế các BĐT trên, ta được:

\(4\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^2bc+b^2cd+c^2da+d^2ab\right)\)

\(\Leftrightarrow a^4+b^4+c^4+d^4\ge a^2bc+b^2cd+c^2da+d^2ab\left(đpcm\right)\)

Dấu "=" xảy ra.....

Thường là đề trên cho thêm dữ kiện a,b,c,d\(\ge0\), hoặc bạn có thể dùng dấu GTTĐ( Cũng làm như trên , nhưng áp dụngthêm \(\left\{{}\begin{matrix}\left|a\right|\ge a\\\left|b\right|\ge b\end{matrix}\right.\))