K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Ta có :

\(\frac{a+b+c+d}{2a}=\frac{1}{2}+\frac{b+c+d}{2a}\ge2\sqrt{\frac{1}{2}.\frac{b+c+d}{2a}}=2.\sqrt{\frac{b+c+d}{4a}}=\sqrt{\frac{b+c+d}{a}}\)

Do đó : \(\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\)

NV
27 tháng 4 2019

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!

NV
25 tháng 4 2020

Bạn tham khảo (hoàn toàn dùng Cô-si):

Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến

25 tháng 4 2020

cảm ơn ạ ^^

NV
16 tháng 3 2019

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

3 tháng 10 2019

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Đẳng thức xảy ra khi a =b = c

b)Tương tự câu a

c)\(\sqrt{\frac{a}{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)

Tương tự 3 BĐT còn lại và cộng theo vế ta được \(VT\ge2\)

Nhưng dấu "=" không xảy ra nên ta có đpcm.

d) Chưa nghĩ ra.

Bài 2:

a) Đề thiếu (or sai hay sao ý)

3 tháng 10 2019

d, Với a,b >0.Áp dụng bđt svac-xơ có:

\(\frac{3}{a}+\frac{1}{b}=\frac{3}{a}+\frac{2}{2b}\ge\frac{\left(\sqrt{3}+\sqrt{2}\right)^2}{a+2b}=\frac{5+2\sqrt{6}}{a+2b}>\frac{\sqrt{24}+2\sqrt{6}}{a+2b}\)

=> \(\frac{3}{a}+\frac{1}{b}>\frac{4\sqrt{6}}{a+2b}\)

10 tháng 2 2018

a, Có : (a-b)^2 >= 0

<=> a^2+b^2-2ab >= 0

<=> a^2+b^2 >= 2ab

<=> a^2+b^2+2ab >= 4ab

<=> (a+b)^2 >= 4ab

Vì a,b > 0 nên ta chia 2 vế bđt cho (a+b).ab ta được :

a+b/ab >= 4/a+b

<=> 1/a+1/b >= 4/a+b

=> ĐPCM

Dấu "=" xảy ra <=> a=b>0

Tk mk nha

10 tháng 2 2018

Biến đổi tương đương 

<=> (a + b)/ab >/ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế 

<=> (a + b)2 >/ 4ab 

<=> a2 + 2ab + b2 >/ 4ab 

<=> a2 - 2ab + b2 >/ 0 

<=> (a - b)2 >/ 0 luôn đúng a,b > 0 

=>đpcm 

Dấu " = " xảy ra ⇔ a = b