K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

trong sách nâng cao toán 8 của vũ hữu bình ấy bạn

19 tháng 2 2021

giả sử \(a\ge b\ge c>0\)

Ta có : \(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a\left(ab+ac-b^2-c^2\right)}{\left(b^2+c^2\right)\left(b+c\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b^2+c^2\right)\left(b+c\right)}\)

TT: \(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ba\left(b-a\right)}{\left(c^2+a^2\right)\left(c+a\right)}\)

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ca\left(c-a\right)+cb\left(c-b\right)}{\left(a^2+b^2\right)\left(a+b\right)}\)

Do đó: \(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

\(=ab\left(a-b\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}\right]\)

\(+ca\left(a-c\right)\left[\frac{1}{\left(b^2+c^2\right)\left(b+c\right)}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)

\(+bc\left(b-c\right)\left[\frac{1}{\left(c^2+a^2\right)\left(c+a\right)}-\frac{1}{\left(a^2+b^2\right)\left(a+b\right)}\right]\)

Vì \(a\ge b\ge c\) => gtri bt > 0

=> đpcm

3 tháng 3 2017

                  \(a+b+c=3\)

              So \(\frac{1}{a2}\)

9 tháng 6 2018

We have:\(\hept{\begin{cases}a^2+b^2+c^2=\frac{1}{3}\\a,b,c>0\end{cases}\Rightarrow0< a,b,c< \frac{1}{\sqrt{3}}}\)

We prove to:

\(4x+\frac{2}{3x}\ge-3x^2+\frac{11}{3}\)  with  \(0< x< \frac{1}{\sqrt{3}}\)

\(\Leftrightarrow4x+\frac{2}{3x}+3x^2-\frac{11}{3}\ge0\)

\(\Leftrightarrow9x^3+12x^2-11x+2\ge0\)

\(\Leftrightarrow\left(3x+1\right)^2\left(x+2\right)\ge0\)   Always true to all \(0< x< \frac{1}{\sqrt{3}}\) 

\(\Rightarrow VT\ge-3a^2+\frac{11}{3}-3b^2+\frac{11}{3}-3c^2+\frac{11}{3}\)

\(=-3\left(a^2+b^2+c^2\right)+11=-3.\frac{1}{3}+11=10\) \(\left(đpcm\right)\)

9 tháng 6 2018

Đặt biểu thức trên là \(A\)

Ta có : \(A=\left(4a+\frac{2}{3a}\right)+\left(4b+\frac{2}{3b}\right)+\left(4c+\frac{2}{3c}\right)\)

Cần chứng minh \(4a+\frac{2}{3a}\ge-3a^2+\frac{11}{3}\) (*)

Thật vậy \(BĐT\Leftrightarrow4a+\frac{2}{3a}+3a^2-\frac{11}{3}\ge0\)

\(\Leftrightarrow\frac{12a^2+2+9a^3-11a}{3a}\ge0\Leftrightarrow\frac{\left(a+2\right)\left(3a-1\right)^2}{3a}\ge0\) (luôn đúng)

Tương tự : \(4b+\frac{2}{3b}\ge-3b^2+\frac{11}{3}\)   và \(4c+\frac{2}{3c}\ge-3c^2+\frac{11}{3}\)

Cộng các bất dẳng thức vừa CM đc ta có :

\(A\ge-3\left(a^2+b^2+c^2\right)+\frac{11}{3}.3=-3.\frac{1}{3}+11=10\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

8 tháng 8 2017

Dảnh àk =))

8 tháng 8 2017

Cứ đăng đi - úng hộ ^^

4 tháng 7 2019

Ta có \(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)

\(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\)

..............................

=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\left(1\right)\)

Áp dụng bđt cosi ta có

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)

\(\frac{b^2}{c^5}+\frac{1}{b^2c}\ge\frac{2}{c^3}\)

\(\frac{c^2}{d^5}+\frac{1}{c^2d}\ge\frac{2}{d^3}\)

\(\frac{d^2}{a^5}+\frac{1}{d^2a}\ge\frac{2}{a^3}\)

Cộng vế của các bđt trên và kết hợp với (1)

=> ĐPCM

Dấu bằng xảy ra khi a=b=c