K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

\(\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)=1-\frac{1}{a}-\frac{1}{b}+\frac{1}{ab}\le1-\frac{1}{2\sqrt{ab}}+\frac{1}{ab}\)

Ta có:\(4=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le2\Rightarrow\frac{1}{\sqrt{ab}}\ge2\)

Đặt \(x=\frac{1}{\sqrt{ab}}\ge2\Rightarrow A=1-\frac{a}{2}+a^2\) đạo hàm  phát ra ngay nè <3 

8 tháng 8 2020

Cach khac: a+b>= 2 căn ab => 4 >= 2 căn ab => 4>= ab

\(A=\left(1-\frac{1}{a}\right).\left(1-\frac{1}{b}\right)=1-\frac{1}{a}-\frac{1}{b}+\frac{1}{ab}\)

Ta có: \(1-\frac{1}{a}-\frac{1}{b}+\frac{1}{ab}-\frac{1}{4}\)

\(=\frac{ab-4}{ab}-\frac{ab-4}{4ab}\left(a+b=4\right)\)

\(=\left(ab-4\right).\frac{3}{4}ab\le0\left(a,b>0;4\ge ab\right)\)

\(\Rightarrow A=1-\frac{1}{a}-\frac{1}{b}+\frac{1}{ab}\le\frac{1}{4}\)

Dấu = xr khi a=b=4/2=2

Vậy Max A=1/4 đạt tại a=b=2

31 tháng 8 2020

Xét bđt sau :\(\left(a+b^3\right)\left(m+n\right)\ge\left(\sqrt{am}+\sqrt{b^3n}\right)^2\)(đúng theo bunhia nhé)

Chon \(m=a;n=\frac{1}{b}\)khi đó :

\(\left(a+b^3\right)\left(\frac{1}{a}+b\right)\ge\left(\sqrt{a.a}+\sqrt{b^3.\frac{1}{b}}\right)^2\)

\(< =>\left(a+b^3\right)\left(\frac{1}{a}+b\right)\ge\left(a+b\right)^2\)

\(< =>a+b^3\ge\frac{\left(a+b\right)^2}{\frac{1}{a}+b}=\frac{a\left(a+b\right)^2}{1+ab}\)

Suy ra \(\frac{1}{a+b^3}\le\frac{1+ab}{a\left(a+b\right)^2}\)(*)

Bằng cách chứng minh tương tự ta được :\(\frac{1}{a^3+b}\le\frac{1+ab}{b\left(a+b\right)^2}\)(**)

Từ (*) và (**) suy ra : \(\frac{1}{a+b^3}+\frac{1}{a^3+b}\le\frac{1+ab}{a\left(a+b\right)^2}+\frac{1+ab}{b\left(a+b\right)^2}\)

\(=\frac{1}{\left(a+b\right)^2}\left(\frac{1+ab}{a}+\frac{1+ab}{b}\right)=\frac{1}{\left(a+b\right)^2}\left(\frac{1}{a}+a+\frac{1}{b}+b\right)\)

\(=\frac{\frac{1}{a}+\frac{1}{b}+a+b}{\left(a+b\right)^2}=\frac{\frac{1}{a}+\frac{1}{b}}{\left(a+b\right)^2}+\frac{1}{a+b}=\frac{\frac{a+b}{ab}}{\left(a+b\right)^2}+\frac{1}{a+b}=\frac{1}{ab\left(a+b\right)}+\frac{1}{a+b}\)

Khi đó bài toán trở thành tìm GTLN của biểu thức :

\(A\le S=\left(a+b\right)\left(\frac{1}{ab\left(a+b\right)}+\frac{1}{a+b}\right)-\frac{1}{ab}=\frac{a+b}{ab\left(a+b\right)}+\frac{a+b}{a+b}-\frac{1}{ab}\)

\(=\frac{1}{ab}+1-\frac{1}{ab}=1\)

Vậy \(A_{max}=1\)đạt được khi ...

chuyên KHTN 2017 ?

23 tháng 4 2018

Áp dụng BĐT Bunyakovsky:

\(\left(a+b^3\right)\left(a+\dfrac{1}{b}\right)\ge\left(a+b\right)^2\);\(\left(a^3+b\right)\left(\dfrac{1}{a}+b\right)\ge\left(a+b\right)^2\)

\(\Rightarrow VT\le\left(a+b\right)\left[\dfrac{a+\dfrac{1}{b}}{\left(a+b\right)^2}+\dfrac{b+\dfrac{1}{a}}{\left(a+b\right)^2}\right]-\dfrac{1}{ab}\)

\(=\dfrac{a+b+\dfrac{1}{a}+\dfrac{1}{b}}{a+b}-\dfrac{1}{ab}=1\)

Dấu = xảy ra khi a=b=1

6 tháng 7 2020

Ta có: \(2(1-\text{A})=2\Big[1- \left( a+b \right) \left(\frac{1}{a+b^3}+ \frac{1}{a^3+b}\right) +{\frac {1}{ab}}\Big] \)

\(={\frac { \left( {a}^{2}+{b}^{2} \right) \left( a-b \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) ab}}+{\frac {{a}^{ 3} \left( b+1 \right) ^{2} \left( b-1 \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) b}}+{\frac {{b}^{3} \left( a+1 \right) ^{2} \left( a-1 \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) a}}+\,{\frac {2 \left( ab-1 \right) ^{2}}{ \left( {b}^{3}+a \right) \left( {a}^{3}+b \right) }}\geq 0\)

Đẳng thức xảy ra khi $a=b.$

Bài toán chỉ có thế hehe

16 tháng 10 2020

Do a,b > 0 => \(1-\frac{1}{a}\) và \(1-\frac{1}{b}\)luôn dương

Áp dụng bđt : \(xy\le\frac{\left(x+y\right)^2}{4}\) <=> \(\left(x+y\right)^2\ge4xy\) <=> \(\left(x-y\right)^2\ge0\) (luôn đúng)

P = \(\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\le\frac{1}{4}\left(1-\frac{1}{a}+1-\frac{1}{b}\right)^2=\frac{1}{4}\left[2-\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2\)

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (a,b > 0) (1)

CM bđt đúng: Từ (1) <=> \(\left(\frac{x+y}{xy}\right)\left(x+y\right)\ge4\)

<=> \(\left(x+y\right)^2\ge4xy\) <=> \(\left(x-y\right)^2\ge0\) (luôn đúng)

Khi đó: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=\frac{4}{4}=1\)

=> \(2-\left(\frac{1}{a}+\frac{1}{b}\right)\le2-1=1\) => \(\frac{1}{4}\left[2-\left(\frac{1}{a}+\frac{1}{b}\right)\right]^2\le\frac{1}{4}.1^2=\frac{1}{4}\)

Dấu "=" xảy ra <=> a = b = 2

Vậy MaxP = 1/4 khi a =b = 2

12 tháng 4 2020

Áp dụng BĐT Bunhiacopski ta có:

\(\left(a^3+b\right)\left(\frac{1}{a}+b\right)\ge\left(a+b\right)^2;\left(b^3+a\right)\left(\frac{1}{b}+a\right)\ge\left(a+b\right)^2\)

\(\Rightarrow\frac{a+b}{a^3+b}\le\frac{\frac{1}{a}+b}{a+b};\frac{a+b}{b^3+a}\le\frac{\frac{1}{b}+a}{a+b}\)

\(\Leftrightarrow M\le\frac{\frac{1}{a}+b}{a+b}+\frac{\frac{1}{b}+a}{a+b}-\frac{1}{ab}=\frac{\frac{1}{a}+\frac{1}{b}+a+b}{a+b}-\frac{1}{ab}\)

\(=\frac{ab\left(a+b\right)+a+b-\left(a+b\right)}{ab\left(a+b\right)}=1\)

Dấu "=" xảy ra tại a=b=1

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

Lời giải:

Ta có:

$a+b+c=abc\Rightarrow a(a+b+c)=a^2bc$

$\Leftrightarrow bc+a(a+b+c)=bc(a^2+1)$

$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)$

$\Rightarrow \frac{a}{\sqrt{bc(a^2+1)}}=\frac{a}{\sqrt{(a+b)(a+c)}}$

Áp dụng BĐT AM-GM:

\(\frac{a}{\sqrt{bc(1+a^2)}}=\frac{a}{\sqrt{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

Hoàn toàn tương tự với các phân thức còn lại:

\(S\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)

Vậy $S_{\max}=\frac{3}{2}$. Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$

17 tháng 4 2019

\(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\)

\(=\frac{1}{a^2+b^2+2a+2}+\frac{1}{b^2+c^2+2b+2}+\frac{1}{c^2+a^2+2c+2}\)

\(\le\frac{1}{2ab+2a+2}+\frac{1}{2bc+2b+2}+\frac{1}{2ac+2c+2}\)

\(=\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\right)=\frac{1}{2}\)

\("="\Leftrightarrow a=b=c=1\)