K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

\(\sqrt{\frac{a}{a+bc}}=\frac{a}{\sqrt{a^2+abc}}=\frac{a}{\sqrt{a^2+ab+bc+ca}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Tương tự \(\sqrt{\frac{b}{b+ca}}=\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}};\sqrt{\frac{c}{c+ab}}=\frac{c}{\left(c+a\right)\left(c+b\right)}\)

\(\Rightarrow VT=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(\le\frac{a}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{b}{2}\left(\frac{1}{b+c}+\frac{1}{b+a}\right)+\frac{c}{2}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)

\(=\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{c}{a+c}\right)\)

\(=\frac{3}{2}\)

Dấu "=" xảy ra tại \(a=b=c=3\)

6 tháng 7 2016

Trả lời hộ mình đi

6 tháng 7 2019

a) Ta có BĐT:

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)

Khi \(a=b=c\)

6 tháng 7 2019

cảm ơn ạ

NV
24 tháng 6 2020

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

Tương tự: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\) ; \(\sqrt{\frac{ca}{b+ca}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{a+b}\right)\)

Cộng vế với vế: \(VT\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{c}{a+c}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

6 tháng 7 2019

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+ab+ac+bc}\)

\(=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}=\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si :

\(\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)

Chứng minh tương tự với các phân thức còn lại, cộng theo vế ta có :

\(VT\le\frac{\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{ab}{a+c}+\frac{ab}{b+c}\right)}{2}\)

\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

7 tháng 8 2019

Từ giả thiết suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)  (*) (Vì a,b,c > 0)

Áp dụng BĐT Cauchy ta có:

\(\frac{1}{\sqrt{a^3+b}}\le\frac{1}{\sqrt{2}.\sqrt[4]{a^3b}}=\frac{1}{\sqrt{2}}.\sqrt[4]{\frac{1}{a}.\frac{1}{a}.\frac{1}{a}.\frac{1}{b}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{a}+\frac{1}{b}\right)\)

Đánh giá tương tự: \(\frac{1}{\sqrt{b^3+c}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{b}+\frac{1}{c}\right);\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{c}+\frac{1}{a}\right)\)

Từ đó, kết hợp với (*) suy ra:

 \(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}.4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3\sqrt{2}}{2}\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1.\)

kết bạn với mình không

9 tháng 9 2019

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

16 tháng 5 2017

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm