K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

cách max dài và hại não

cần C/m : \(\Sigma\sqrt{a^2-a+1}\ge\Sigma a\) \(\Leftrightarrow3+2\sqrt{\left(a^2-a+1\right)\left(b^2-b+1\right)}\ge2\Sigma ab+\Sigma a\)( * )

Ta có \(\left(a^2-a+1\right)\left(b^2-b+1\right)=\left(\frac{3}{4}\left(a-1\right)^2+\frac{1}{4}\left(a+1\right)^2\right)\left(\frac{3}{4}\left(b-1\right)^2+\frac{1}{4}\left(b+1\right)^2\right)\)

\(\ge\frac{3}{4}\left|a-1\right|\left|b-1\right|+\frac{1}{4}\left(a+1\right)\left(b+1\right)\)( BĐT Bu-nhi-a-cốp-ski ) 

\(\ge\frac{3}{4}\left(a-1\right)\left(b-1\right)+\frac{1}{4}\left(a+1\right)\left(b+1\right)=\frac{-1}{2}ab+a+b-\frac{1}{2}\)

Do đó : VT ( * ) \(\ge4\Sigma a-\Sigma ab\). BĐT đúng nếu : \(\Sigma a\ge\Sigma ab\)

Điều này đúng khi trong a,b,c có 1 số \(\le\)1 và 1 số khác  \(\ge\)1

Ta xét trong a,b,c có 2 số \(\ge\)1 , giả sử là b và c  . Khi đó BĐT đã cho trở thành : 

\(\frac{1-a}{\sqrt{a^2-a+1}+a}+\frac{1-b}{\sqrt{b^2-b+1}+b}+\frac{1-c}{\sqrt{c^2-c+1}+c}\ge0\)( ** )

b,c \(\ge\)\(\Rightarrow1-b,1-c\le0\)

Ta có : \(\sqrt{b^2-b+1}\ge\frac{b+1}{2}\)và \(\sqrt{c^2-c+1}\ge\frac{c+1}{2}\)

Do đó : VT ( ** ) \(\ge\frac{1-a}{\sqrt{a^2-a+1}+a}+\frac{2\left(1-b\right)}{3b+1}+\frac{2\left(1-c\right)}{3c+1}\)

\(=\frac{1-a}{\sqrt{a^2-a+1}+a}+\frac{8}{3}\left(\frac{1}{3b+1}+\frac{1}{3c+1}\right)-\frac{4}{3}\)

bổ đề  \(\sqrt{bc}\ge1\)thì \(\frac{1}{3b+1}+\frac{1}{3c+1}\ge\frac{2}{3\sqrt{bc}+1}\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\left(9\sqrt{bc}-1\right)\ge0\)

vì vậy : VT (**) \(\ge\frac{1-a}{\sqrt{a^2-a+1}+a}+\frac{16}{3\left(3\sqrt{bc}+1\right)}-\frac{4}{3}\)

\(=\sqrt{a^2-a+1}-a+\frac{16\sqrt{a}}{3\left(3+\sqrt{a}\right)}-\frac{4}{3}\)

đặt \(\sqrt{a}=t\le1\), cần chứng minh : \(\sqrt{t^4-t^2+1}-t^2+\frac{16t}{3\left(3+t\right)}\ge\frac{4}{3}\)( BĐT đúng nếu t > 0,28 )

Xét \(a\le t^2=0,0784\Rightarrow a\in\left[0;0,0784\right]\)

Lại có :  \(\sqrt{b^2-b+1}>b-\frac{1}{2};\sqrt{c^2-c+1}>c-\frac{1}{2}\)

Do đó : \(\frac{1-b}{\sqrt{b^2-b+1}+b}+\frac{1-c}{\sqrt{c^2-c+1}+c}\ge\frac{1-b}{2b-\frac{1}{2}}+\frac{1-c}{2c-\frac{1}{2}}\)

\(\frac{1}{2}\left[\frac{\frac{3}{2}-\left(2b-\frac{1}{2}\right)}{2b-\frac{1}{2}}+\frac{\frac{3}{2}-\left(2c-\frac{1}{2}\right)}{2c-\frac{1}{2}}\right]=\frac{3}{4}\left(\frac{1}{2b-\frac{1}{2}}+\frac{1}{2c-\frac{1}{2}}\right)-1\)

\(\ge\frac{3}{\frac{1}{\sqrt{bc}}-1}=\frac{3\sqrt{a}}{4-\sqrt{a}}-1\)

do đó : VT ( ** ) \(\ge\sqrt{t^4-t^2+1}-t^2+\frac{3t}{4-t}-1\)\(\ge0\)

\(\Leftrightarrow3t\left(\frac{1}{4-t}+\frac{t}{\sqrt{t^4-t^2+1}+t^2+1}\right)\ge0\)

\(\Leftrightarrow3t.\frac{\sqrt{t^4-t^2+1}+2t^2-4t+1}{\left(4-t\right)\left(\sqrt{t^4-t^2+1}+t^2+1\right)}\ge0\)

BĐT cuối đúng \(\forall\)t < 0,25 < 0,28

\(\Rightarrow\)đpcm

P/s : bài này mình tham khảo nha. cách rất dài, khó

NV
19 tháng 4 2022

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

19 tháng 4 2022

à mình quên < hặc =1/2

28 tháng 2 2017

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

3 tháng 8 2020

1+1+1+1+1+2=7

3 tháng 8 2020

đặt \(\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}=P\)

phương pháp khảo sát hàm đặc trưng rất hữu hiệu cho những bài bất đẳng thức đối xứng

bài toán cho f(x)+f(y)-f(z) >= A

tìm min, max của S-g(x)+g(y)+g(z)

*nháp

điều kiện x,y,z thuộc D, dự đoán dấu bằng xảy ra khi x=y=z=\(\alpha\). Khảo sát hàm đặc trưng h(t)-g(t)-mf(t) với m=\(\frac{g'\left(\alpha\right)}{f'\left(\alpha\right)}\)sau khi đã tìm được m chỉ cần xét đạo hàm h(t) nữa là xong

ta khảo sát hàm \(f\left(x\right)=\sqrt{x^2+\frac{1}{x^2}}-mx\)

để hàm số có cực tiểu thì f(x)=0 \(\Leftrightarrow\frac{x^4-1}{x^3\sqrt{x^2+\frac{1}{x^2}}}-m=0\)nhận thấy "=" ở x=\(\frac{1}{3}\)nên m=\(\frac{80}{-\sqrt{82}}\)

xét hàm số đại diện f(t)=\(\sqrt{t^2+\frac{1}{t^2}}-\frac{80}{\sqrt{82}}t\)trên (0;1) có f(t)\(\ge f\left(\frac{1}{3}\right)=\frac{162}{3\sqrt{82}}\)

vậy thì \(P\ge-\frac{80}{\sqrt{82}}\left(x+y+z\right)+\frac{162}{\sqrt{82}}=\sqrt{82}\)

bài toán được chứng minh xong

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)

7 tháng 5 2020

Đề thi Olympic 30/4 Môn Toán 2018 lần thứ XXIV

Vài dòng đầu tớ chứng minh BĐT phụ bạn có thể làm trực tiếp luôn nhé ! Dùng phương pháp tiếp tuyến là OK thôi !

Ta dễ có các biến đổi sau:

\(\sqrt{a^2-a+1}\left(a^2+a+1\right)=\sqrt{\left(a^2-a+1\right)\left(a^2+a+1\right)\left(a^2+a+1\right)}\)

\(=\sqrt{\left(a^4+a^2+1\right)\left(a^2+a+1\right)}\)

\(=\sqrt{\left[\left(a^2+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\right]}\)

\(\ge\left(a^2+\frac{1}{2}\right)\left(a+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\frac{2a^3+a^2+a+2}{2}\)

\(\Rightarrow\sqrt{a^2-a+1}\ge\frac{2a^3+a^2+a+2}{2\left(a^2+a+1\right)}=a-\frac{1}{2}+\frac{3}{2}\left(\frac{1}{a^2+a+1}\right)\)

Chứng minh tương tự ta có được các bất đẳng thức sau:

\(\sqrt{b^2-b+1}=b-\frac{1}{2}+\frac{3}{2}\cdot\frac{1}{b^2+b+1};\sqrt{c^2-c+1}=c-\frac{1}{2}+\frac{3}{2}\cdot\frac{1}{c^2+c+1}\)

Như vậy ta cần chứng minh \(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\) với abc = 1

Đây là BĐT Vacs quen thuộc !!!! Bạn làm câu hỏi của mình có câu trả lời của tth_new có dùng Vacs và mình đã làm rồi nha !!!!!

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Lời giải:

\(a+b+c=abc\Rightarrow a(a+b+c)=a^2bc\)

\(\Rightarrow a(a+b+c)+bc=bc(a^2+1)\)

\(\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Rightarrow a^2+1=\frac{(a+b)(a+c)}{bc}\)

\(\Rightarrow \frac{1}{\sqrt{a^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}\)

Hoàn toàn tương tự với các phân thức còn lại

\(\Rightarrow \text{VT}=\frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}=\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ac}{(b+a)(b+c)}}+\sqrt{\frac{ab}{(c+a)(c+b)}}\)

Áp dụng BĐT Cauchy:

\(\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ac}{(b+a)(b+c)}}+\sqrt{\frac{ab}{(c+a)(c+b)}}\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{a}{b+a}+\frac{c}{b+c}\right)+\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(=\frac{1}{2}\left(\frac{b+a}{b+a}+\frac{c+b}{c+b}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

\(\Rightarrow \text{VT}\leq \frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$