K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

Đặt \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\x+z=c\end{matrix}\right.\Rightarrow a+b+c=2\)

\(bdt\Leftrightarrow a+b\ge4abc\)

Ta có: \(4VT=4\left(a+b\right)=\left(a+b+c\right)^2\left(a+b\right)\ge4c\left(a+b\right)^2\ge16abc=4VP\)

Vậy bđt đc cm

25 tháng 1 2022

giả sử cả 3 số xyz đều nhỏ hơn 1 

=>x+y+z<1+1+1=3

ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3

từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1

26 tháng 8 2015

BĐT đã cho <=> 1 + y \(\ge\) 4.(1 - x).(1 - y).(1 - z)

Áp dụng BĐT :  4ab \(\le\) (a + b)ta có: 4.(1 - x)(1 - z) \(\le\) (1 - x + 1 - z)2 = (1 + y)2

=> 4.(1 - x)(1 - y)(1 - z) \(\le\) (1 + y)2.(1 - y) = (1 + y).(1 -y2\(\le\) (1 + y) .1 = 1+ y => đpcm

Dấu "=" xảy ra khi 1 - y= 1 và x = z => y = 0 ; x = z = 1/2

26 tháng 8 2015

Áp dụng bất đẳng thức quen thuộc \(4xy\le\left(x+y\right)^2\), cho ta

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(1-x\right)\left(1-z\right)\cdot\left(1-y\right)\)

\(\le\left(1-x+1-z\right)^2\cdot\left(1-y\right)=\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\)

\(\le1+y=x+2y+z.\)
 

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

18 tháng 4 2020

Từ gt, ta có \(\left(xyz\right)^2=\left[x\left(1-x\right)\right]\left[y\left(1-y\right)\right]\left[z\left(1-z\right)\right]\)

Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x\left(1-x\right)\le\frac{1}{4};y\left(1-y\right)\le\frac{1}{4};z\left(1-z\right)\le\frac{1}{4}\)

Nhân các bđt trên lại theo vế =. \(\left(xyz\right)^2\le\frac{1}{64}\)hay \(xyz\le\frac{1}{8}\)

Gọi A là số lớn nhất trong các số x(1-y);y(1-z); z(1-y)

khi đó từ gt, ta có:

\(3A\ge x\left(1-y\right)+y\left(1-z\right)+z\left(1-x\right)\)

\(=1-xyz-\left(1-x-y-z+xy+yz+zx-xyz\right)\)

\(=1-xyz-\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(=1-2xyz\ge\frac{3}{4}\)

từ các đánh giá trên => \(A\ge\frac{1}{4}\)

=> đpcm

22 tháng 6 2016

đề lại thiếu rồi bạn ơi Cm cái j

23 tháng 6 2016

lớn hơn hoặc bằng ba căn ba nhé bạn. sorry nha, minh quên mất