K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{ca+1}\ge\frac{9}{3+ab+ca+bc}\)

Cần c/m \(\frac{9}{3+ab+bc+ca}\ge\frac{9}{6}\Leftrightarrow ab+cb+ca\le3\)(*)

Mà \(a^2+b^2+c^2\ge ab+bc+ac\Rightarrow\left(a+b+c\right)^2\ge3ab+3ac+3bc\)

Mặt khác a+b+c=3

nên BĐT (*) đúng hay BĐT cần c/m luôn đúng

NV
3 tháng 7 2020

4.

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

5.

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng vế với vế:

\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

NV
3 tháng 7 2020

1.

Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)

\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

2.

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng vế với vế:

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)

3.

Từ câu b, thay \(c=1\) ta được:

\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)

28 tháng 7 2019

Đề chơi căng nhỉ?

a) Dễ chứng minh VP =< 3

BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)

\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)

\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0

Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.

P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?

28 tháng 7 2019

èo, sai rồi:( đẳng thức xảy ra khi a = b = c = 1 nên cái mẫu = 0 do đó vô lí => bài em sai mất rồi:(( hicc

NV
11 tháng 2 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

6 tháng 4 2018

Cho mk k nhé!

4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13

1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)

AH
Akai Haruma
Giáo viên
6 tháng 4 2018

Lời giải:

Ta sử dụng bổ đề sau:

Bổ đề:Nếu \(a,b>0, ab\geq 1\) thì: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}(*)\)

Chứng minh:

Thực hiện biến đổi tương đương:

\((*)\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2+2)\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow (a-b)^2(ab-1)\geq 0\) (luôn đúng với mọi \(ab\geq 1\) )

Bổ đề đc chứng minh.

Quay trở lại bải toán ban đầu:

Không mất tổng quát giả sử \(c=\min (a,b,c)\)

Khi đó: \(ab=\max (ab,bc,ac)\Rightarrow ab\geq 1\)

Áp dụng bổ đề đã nêu:

\(\text{VT}=\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\geq \frac{2}{ab+1}+\frac{1}{c^2+1}\)

\(\Leftrightarrow \text{VT}\geq \frac{2c^2+ab+3}{abc^2+ab+c^2+1}\)

Ta thấy :

\(\frac{2c^2+ab+3}{abc^2+ab+c^2+1}-\frac{3}{2}=\frac{c^2+3-ab-3abc^2}{2(abc^2+ab+c^2+1)}=\frac{c^2+bc+ac-3abc^2}{2(abc^2+ab+c^2+3)}=\frac{c(a+b+c-3abc)}{2(abc^2+ab+c^2+1)}\)

Áp dụng BĐT AM_GM:

\((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)

\(\Rightarrow 3(a+b+c)\geq 9abc\Rightarrow a+b+c\geq 3abc\)

\(\Rightarrow \frac{2c^2+ab+3}{abc^2+ab+c^2+1}-\frac{3}{2}=\frac{c(a+b+c-3abc)}{2(abc^2+ab+c^2+1)}\geq 0\)

\(\Rightarrow \text{VT}\geq \frac{2c^2+ab+3}{abc^2+ab+c^2+1}\geq \frac{3}{2}\)

Ta có đpcm. Dấu bằng xảy ra khi \(a=b=c=1\)

6 tháng 4 2018

Áp dụng BĐT Swarchz ta có

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{(1+1+1)^2}{1+1+1+ab+bc+ac}=\frac{9}{6} =\frac{3}{2}\)(đpcm)