K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

\(1)\)

\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)=a^3+2ab+b^3-ab=a^3+b^3+ab\)

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1}{2}\) ( Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=\frac{1}{2}\)

\(2)\)

\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=\frac{1}{\frac{a+b+c}{2}-a}+\frac{1}{\frac{a+b+c}{2}-b}+\frac{1}{\frac{a+b+c}{2}-c}\)

\(=2\left(\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\right)\)

Có : \(\hept{\begin{cases}b-a< c\\c-b< a\\a-c< b\end{cases}}\)

\(2\left(\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\right)>2\left(\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2b}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) ??? 

21 tháng 1 2019

1.  A = a(a2 + 2b) + b(b2 - a)

A = a3 + 2ab + b3 - ab

A = a3 + ab + b3

A = ( a + b ) ( a2 - ab + b2 ) + ab

A = a2 + b2

Mà ( a - b )2 \(\ge\)0 với mọi a,b

 \(\Rightarrow\)a2 + b2 \(\ge\)2ab \(\Rightarrow\)2 . ( a2 + b2 ) \(\ge\)( a + b )2 = 1 \(\Rightarrow\)( a2 + b\(\ge\)\(\frac{1}{2}\)

\(\Rightarrow\)\(\ge\)\(\frac{1}{2}\)  . Dấu " = " xảy ra \(\Leftrightarrow\)a = b \(\frac{1}{2}\)

14 tháng 4 2018

Do p là nửa chu vi tam giác nên \(2p=a+b+c\)

Ta có bổ đề sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Áp dụng vào bài toán: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a},\)\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)

Dấu "=" xảy ra khi a=b=c.

18 tháng 6 2018

\(P=\frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}=\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2bc+2ab-b^2}+\frac{c^2}{2ac+2bc-c^2}\)

vì a,b,c là 3 cạnh của 1 tam giác áp dụng bđt tam giác có:

\(\hept{\begin{cases}b+c>a\Rightarrow2b+2c>a\Rightarrow2ab+2ac>a^2\Rightarrow2ab+2ac-a^2>0\\c+a>b\Rightarrow2c+2a>b\Rightarrow2bc+2ab>b^2\Rightarrow2bc+2ab-b^2>0\\a+b>c\Rightarrow2a+2b>c\Rightarrow2ac+2bc>c^2\Rightarrow2ac+2bc-c^2>0\end{cases}}\)

\(\Rightarrow\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2bc+2ab-b^2}+\frac{c^2}{2ac+2bc-c^2}>0\)áp dụng bđt cauchy schawazt dạng enge ta có:

\(\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2bc+2ab-b^2}+\frac{c^2}{2ac+2bc-c^2}>=\)

\(\frac{\left(a+b+c\right)^2}{2ab+2ac-a^2+2bc+2ab-b^2+2ac+2bc-c^2}=\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-\left(a^2+b^2+c^2\right)}\left(1\right)\)

vì \(a^2+b^2+c^2>=ab+ac+bc\Rightarrow4ab+4ac+4bc-\left(a^2+b^2+c^2\right)< =\)

\(4ab+4ac+4bc-\left(ab+ac+bc\right)\)mà \(\left(a+b+c\right)^2>0\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-\left(a^2+b^2+c^2\right)}>=\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-\left(ab+ac+bc\right)}\)(2)

\(=\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-ab-ac-bc}=\frac{\left(a+b+c\right)^2}{3ab+3ac+3bc}=\frac{a^2+b^2+c^2+2ab+2ac+2bc}{3ab+3ac+3bc}\)

\(>=\frac{ab+ac+bc+2ab+2ac+2bc}{3ab+3ac+3bc}=\frac{3ab+3ac+3bc}{3ab+3ac+3bc}=1\)(3)

từ (1)(2)(3)\(\Rightarrow\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2bc+2ab-b^2}+\frac{c^2}{2ac+2bc-c^2}>=1\)

\(\Rightarrow P=\frac{a}{2b+2c-a}+\frac{b}{2c+2a-b}+\frac{c}{2a+2b-c}>=1\)

dấu = xảy ra khi a=b=c

vậy min P là 1 khi a=b=c

12 tháng 2 2016

Ta có:  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)   \(\left(\text{*}\right)\) , với  \(a,b>0\)  (vì  

Thật vậy, áp dụng bất đẳng thức Cô-si cho hai số dương  \(a,b>0\), ta được:

\(a+b\ge2\sqrt{ab}\)   và  \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}.\frac{1}{b}}=\frac{2}{\sqrt{ab}}\)

Do đó,  \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)  \(\Leftrightarrow\)  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b\)

Vậy, bất đẳng thức  \(\left(\text{*}\right)\)  đã được chứng minh.

                                                               \(----------------------\)

Vì  \(a,b,c,p\)  lần lượt là độ dài ba cạnh và nửa chu vi của tam giác nên \(a,b,c,p>0\)

Áp dụng  bất đẳng thức \(\left(\text{*}\right)\)  với  \(p-a,\)  \(p-b,\)  \(p-c\)  là các số dương, ta có:

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{\left(p-a+p-b\right)}=\frac{4}{\left(2p-a-b\right)}=\frac{4}{c}\)  \(\left(1\right)\)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{\left(p-b+p-c\right)}=\frac{4}{\left(2p-b-c\right)}=\frac{4}{a}\)  \(\left(2\right)\)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{\left(p-c+p-a\right)}=\frac{4}{\left(2p-c-a\right)}=\frac{4}{b}\)  \(\left(3\right)\)

Cộng  \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\)  lần lượt vế theo vế, ta được:

\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\)  \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(p-a=p-b=p-c\), tức là  \(a=b=c\)  hay tam giác đã cho là tam giác đều (vì có 3 cạnh bằng nhau).

1 tháng 8 2017

a^2+b^2+c^2=(a+b+c)^2-2ab-2bc-2ca=1-2ab-2bc-2ca

((a^2+b^2+c^2)-1)/2abc=(1-2ab-2bc-2ca-1)/abc=-(1/a+1/b+1/c)

T=4/a+b +4/b+c +4/c+a<=1/a+1/b+1/b+1/c+1/c+1/a-1/a-1/b-1/c=1/a+1/b+1/c<=9

Dấu = khi a=b=c=1/3

e cảm ơn anh nhìu nke hihi .Anh giỏi wa