K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2022

Đề bài sai

Đề đúng: \(\dfrac{1}{\sqrt{a}+2\sqrt{b}+3}+\dfrac{1}{\sqrt{b}+2\sqrt{c}+3}+\dfrac{1}{\sqrt{c}+2\sqrt{a}+3}\le\dfrac{1}{2}\)

19 tháng 4 2022

à mình quên < hặc =1/2

14 tháng 5 2023

bài này khó giúp hộ em với

 

23 tháng 8 2020

Áp dụng bất đẳng thức Bunhiacopxki ta có \(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)\(=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

Theo một bất đẳng thức quen thuộc ta có \(abc\left(a+b+c\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\)

Từ đó ta được \(abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}{3}\)\(\le\frac{\left(a^2+b^2+c^2+ab+bc+ca+ab+bc+ca\right)^3}{3^4}=\frac{\left(a+b+c\right)^6}{3^4}\)

Do đó ta có \(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le\frac{\left(a+b+c\right)^6}{3^4}\)hay \(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\le\frac{\left(a+b+c\right)^3}{3^2}\)(*)

Dễ dàng chứng minh được \(a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)(**)

Từ (*) và (**) suy ra \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\sqrt[3]{2}\)

27 tháng 10 2019

Xét hiệu : \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0,\forall a,b>0\)

\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\)

Áp dụng BĐT AM-GM :
\(a^3+b^3+2c^3\ge ab\left(a+b\right)+2c^3\ge2\sqrt{ab\left(a+b\right).2c^3}=2\sqrt{4c^2\left(a+b\right)}\)

\(=4c\sqrt{a+b}\)

Hoàn toàn tương tự

\(a^3+2b^3+c^3\ge4b\sqrt{a+c};2a^3+b^3+c^3\ge4a\sqrt{b+c}\)

Cộng thao vế bất đẳng thức vừa thu được

\(\Rightarrow a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\sqrt[3]{2}\)

Chúc bạn học tốt !!!

27 tháng 10 2021

TK: Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{... - Hoc24

15 tháng 2 2021

Bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\) \(\left(\forall a,b,c>0\right)\)

chứng minh bổ đề: \(\Sigma_{cyc}\left(\dfrac{a^3}{a^3+b^3+c^3}\right)+\dfrac{1}{3}+\dfrac{1}{3}\ge3\sqrt[3]{\left(\Pi_{cyc}\dfrac{a^3}{a^3+b^3+c^3}\right).\dfrac{1}{3}.\dfrac{1}{3}}\)

hoán vị theo a,b,c

ta được: \(3\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{9.\left(a^3+b^3+c^3\right)}}\)

mũ 3 hai vế ta có được bất đẳng thức bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\)

Áp dụng bất C-S: 

\(\sqrt{a^3+3b}+\sqrt{b^3+3c}+\sqrt{c^3+3a}\ge\sqrt{\left(1+1+1\right)\left(a^3+b^3+c^3+3a+3b+3c\right)}\)

\(\ge\sqrt{3.\left[3+3\left(a+b+c\right)\right]}=\sqrt{36}=6\)

Dấu "=" xảy ra tại a=b=c=1

NV
30 tháng 12 2021

Đề bài này sai