K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Ta có :

\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)\(\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+ab}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)

\(\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)\(\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+b^2\right)\left(1+a^2\right)\left(1+ab\right)}\ge0\).vì ab≥0 nên sua ra đpcm

5 tháng 1 2018

ab >=1 cha ơi :D Viết nhầm kìa

NV
4 tháng 10 2021

\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)

\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

15 tháng 4 2017

Dùng phương pháp biến đổi tương đương nhé!!!

Ta có : \(\dfrac{1}{1+a^2}\) + \(\dfrac{1}{1+b^2}\) \(\ge\) \(\dfrac{2}{1+ab}\)

<=>( \(\dfrac{1}{1+a^2}\) - \(\dfrac{1}{1+ab}\) ) + ( \(\dfrac{1}{1+b^2}\) - \(\dfrac{1}{1+ab}\) ) \(\ge\) 0

<=> \(\dfrac{1+ab-1-a^2}{\left(1+a^2\right)\left(1+ab\right)}\) + \(\dfrac{1+ab-1-b^2}{\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0

<=> \(\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}\) + \(\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0

<=> \(\dfrac{a\left(b-a\right)\left(1+b^2\right)+b\left(a-b\right)\left(1+a^2\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\) \(\ge\) 0

<=> \(a\left(b-a\right)\left(1+b^2\right)-b\left(b-a\right)\left(1+a^2\right)\) \(\ge\) 0

<=> \(\left(b-a\right)\left(a+ab^2-b-a^2b\right)\) \(\ge\) 0

<=> \(\left(b-a\right)\left[ab\left(b-a\right)-\left(b-a\right)\right]\) \(\ge\) 0

<=> \(\left(b-a\right)\left(b-a\right)\left(ab-1\right)\) \(\ge\) 0

<=> \(\left(b-a\right)^2\left(ab-1\right)\) \(\ge\) 0 (1)

\(\left\{{}\begin{matrix}\left(b-a\right)^2\ge0\\ab-1\ge0\end{matrix}\right.\) ( vì ab \(\ge\)1)

=> \(\left(b-a\right)^2\left(ab-1\right)\) \(\ge\) 0

=> (1) luôn đúng

Vậy đpcm ....

17 tháng 4 2017

Ta có: \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)

\(\Leftrightarrow\left(\dfrac{1}{1+a^2}-\dfrac{1}{1+b^2}\right)+\left(\dfrac{1}{1+b^2}-\dfrac{1}{1+ab}\right)\ge0\)

\(\Leftrightarrow\dfrac{ab-a^2}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{ab-b^2}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(1+a^2\right)\left(1+ab\right)}+\dfrac{b\left(a-b\right)}{\left(1+b^2\right)\left(1+ab\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(b-a\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)

BĐT cuối cùng đúng vì \(a.b\ge1\Rightarrowđpcm\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

a)

Sử dụng pp biến đổi tương đương:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)

\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)

Ta có đpcm.

b) Áp dụng công thức của phần a ta có:

\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)

Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)

Do đó:

\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)

Cộng theo vế các BĐT trên thu được:

\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)

\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c=1$

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

AH
Akai Haruma
Giáo viên
9 tháng 6 2021

Bạn xem lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abcge0a2b2c21cmr-dfracc1abdfracb1acdfraca1bcge1.1019784090594

AH
Akai Haruma
Giáo viên
13 tháng 3 2022

Lời giải:
BĐT \(\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

$\Leftrightarrow (a^2+b^2+2)(ab+1)\geq 2(a^2b^2+a^2+b^2+1)$

$\Leftrightarrow a^3b+a^2+ab^3+b^2+2ab+2\geq 2a^2b^2+2a^2+2b^2+2$

$\Leftrightarrow a^3b+ab^3+2ab\geq 2a^2b^2+a^2+b^2$

$\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0$

$\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0$

$\Leftrightarrow (a-b)^2(ab-1)\geq 0$

Điều này luôn đúng với mọi $ab\geq 1$ 

Do đó ta có đpcm 

Dấu "=" xảy ra khi $a=b$ hoặc $ab=1$