K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

(α) // AB, AB ⊂ (ABCD), O là điểm chung của (α) và (ABCD)

=> ( α) ∩ (ABCD) = MN qua O và song song với AB. Các giao tuyến khác tương tự, thiết diện là hình thang MNPQ.

3 tháng 7 2018

Giải bài tập Đại số 11 | Để học tốt Toán 11

+ Ta có: (α) // AB

⇒ giao tuyến (α) và (ABCD) là đường thẳng qua O và song song với AB.

Qua O kẻ MN // AB (M ∈ BC, N ∈ AD)

⇒ (α) ∩ (ABCD) = MN.

+ (α) // SC

⇒ giao tuyến của (α) và (SBC) là đường thẳng qua M và song song với SC.

Kẻ MQ // SC (Q ∈ SB).

+ (α) // AB

⇒ giao tuyến của (α) và (SAB) là đường thẳng qua Q và song song với AB.

Từ Q kẻ QP // AB (P ∈ SA).

⇒ (α) ∩ (SAD) = PN.

Vậy thiết diện của hình chóp cắt bởi (α) là tứ giác MNPQ.

Ta có: PQ// AB và NM // AB

=> PQ // NM

Do đó, tứ giác MNPQ là hình thang.

30 tháng 5 2017

Đáp án D

Trong mặt phẳng (ABCD), kẻ đường thẳng d đi qua O và song song với AB

d cắt AD tại J

d cắt BC tại G

Trong mặt phẳng (SBC), kẻ đường thẳng  Gx đi qua G và song song với SC; đường thẳng này  cắt SB tại H

Trong mặt phẳng (SAB), kẻ đường thẳng y đi qua H và song song với AB

y cắt SA tại I

⇒ IHGJ là thiết diện cần tìm

Xét tứ giác IHGJ có: IH // JG ( // AB )

⇒ IHGJ là hình thang

3 tháng 9 2021

undefined

a, Giả thiết cho biết (α) và(ABCD) cùng chứa điểm O

Mà (α) // AB ⇒ (α) chứa đường thẳng song song với AB

⇒ (α) \(\cap\) (ABCD) = d1 . Với d1 là đường thẳng đi qua O và song song với AB. Trong (ABCD) gọi \(\left\{{}\begin{matrix}G=d_1\cap AD\\H=d_1\cap BC\end{matrix}\right.\)

⇒ (α) \(\cap\) (ABCD) = GH (hình vẽ)

Giả thiết cho biết : 

Giả thiết cho biết (α) và (SAC) cùng chứa điểm O

Mà (α) // SC ⇒ (α) chứa đường thẳng song song với SC

⇒ (α) \(\cap\) (SAC) = d2 . Với d2 là đường thẳng đi qua O và song song với SC. Trong (SAC) gọi I = d2 \(\cap\) SA

⇒ (α) \(\cap\) (SAC) = O\(I\) (hình vẽ)

(P) và (SAB) cùng chứa điểm I. Mà (P) chứa GH, (SAB) chứa AB. Mà ta lại có AB // GH

⇒ (P) \(\cap\) (SAB) = d3. Với d3 là đường thẳng đi qua I và song song với AB và GH

Trong (SAB), gọi J = \(d_3\cap SB\)

⇒ Thiết diện cần tìm là tứ giác IJHG

Tứ giác này có IJ // HG nên nó là hình thang 

23 tháng 12 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Trường hợp 1 .

I thuộc đoạn AO (0 < x < a/2)

Khi đó I ở vị trí I1

Ta có: (α) // (SBD)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì (α) // BD nên (α) cắt (ABD) theo giao tuyến M1N1 ( qua I1) song song với BD

Tương tự (α) // SO nên (α) cắt (SOA) theo giao tuyến

S1T1 song song với SO.

Ta có thiết diện trong trường hợp này là tam giác S1M1N1.

Nhận xét. Dễ thấy rằng S 1 M 1   / /   S B   v à   S 1 N 1   / /   S D . Lúc đó tam giác S1M1N1 đều.

Trường hợp 2. I thuộc đoạn OC (a/2 < x < a)

Khi đó I ở vị trí I2. Tương tự như trường hợp 1 ta có thiết diện là tam giác đều

S 2 M 2 N 2   c ó   M 2 N 2   / /   B D , S 2 M 2   / /   S B ,   S 2 N 2   / /   S D .

Trường hợp 3. I ≡ O. Thiết diện chính là tam giác đều SBD.

b) Ta lần lượt tìm diện tích thiết diện trong các trường hợp 1,2,3.

Trường hợp 1. I thuộc đoạn AO (0 < x < a/2)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trường hợp 2. I thuộc đoạn OC (a/2 < x < a)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trường hợp 3. I ≡ O.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tóm lại

Giải sách bài tập Toán 11 | Giải sbt Toán 11

∗ Đồ thị của hàm số S theo biến x như sau:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Sthiết diện lớn nhất khi và chỉ khi x = a/2.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

TH1: \(\left( \alpha  \right)\) cắt đoạn \(AO\) tại \(I\).

Gọi \(E,F,G\) lần lượt là giao điểm của \(\left( \alpha  \right)\) với \(SA,AB,AD\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {ABCD} \right) = FG\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow FG\parallel B{\rm{D}} \Rightarrow \frac{{AF}}{{AB}} = \frac{{AG}}{{AD}} = \frac{{FG}}{{B{\rm{D}}}}\left( 1 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SAB} \right) = EF\\\left( {SAB} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow EF\parallel SB \Rightarrow \frac{{AF}}{{AB}} = \frac{{AE}}{{AS}} = \frac{{EF}}{{SB}}\left( 2 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SAD} \right) = EG\\\left( {SAD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow EG\parallel SD \Rightarrow \frac{{AG}}{{AD}} = \frac{{AE}}{{AS}} = \frac{{EG}}{{SD}}\left( 3 \right)\end{array}\)

Từ (1), (2) và (3) suy ra \(\frac{{EF}}{{SB}} = \frac{{EG}}{{S{\rm{D}}}} = \frac{{FG}}{{B{\rm{D}}}}\).

Tam giác \(SBD\) đều nên \(SB = SD = BD\).

Do đó \(EF = EG = FG\). Vậy tam giác \(EFG\) đều.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

TH2: \(\left( \alpha  \right)\) cắt đoạn \(CO\) tại \(J\).

Gọi \(M,N,P\) lần lượt là giao điểm của \(\left( \alpha  \right)\) với \(SC,BC,C{\rm{D}}\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {ABCD} \right) = NP\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow NP\parallel B{\rm{D}} \Rightarrow \frac{{CN}}{{CB}} = \frac{{CP}}{{C{\rm{D}}}} = \frac{{NP}}{{B{\rm{D}}}}\left( 4 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SBC} \right) = MN\\\left( {SBC} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow MN\parallel SB \Rightarrow \frac{{CM}}{{C{\rm{S}}}} = \frac{{CN}}{{CB}} = \frac{{MN}}{{SB}}\left( 5 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SCD} \right) = MP\\\left( {SCD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow MP\parallel SD \Rightarrow \frac{{C{\rm{M}}}}{{C{\rm{S}}}} = \frac{{CP}}{{C{\rm{D}}}} = \frac{{MP}}{{SD}}\left( 6 \right)\end{array}\)

Từ (4), (5) và (6) suy ra \(\frac{{MN}}{{SB}} = \frac{{MP}}{{S{\rm{D}}}} = \frac{{NP}}{{B{\rm{D}}}}\).

Tam giác \(SBD\) đều nên \(SB = SD = BD\).

Do đó \(MN = MP = NP\). Vậy tam giác \(MNP\) đều.

7 tháng 10 2019