K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Trả lời

Từ giả thiết x+y+z=xyz <=> 1/xy + 1/yz + 1/zx = 1

Khi đó: x/1+x2 = \(\frac{1}{\frac{x}{\left(\frac{1}{z}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}}\)\(=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)

Tương tự cho 2 cái còn lại ta có:\(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)

\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)

Suy ra VT=\(\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

ĐPCM

21 tháng 8 2019

 Ta có:\(\frac{x}{1+x^2}=\frac{xyz}{yz+x^2yz}=\frac{xyz}{yz+x\left(xyz\right)}=\frac{xyz}{yz+x\left(x+y+z\right)}=\frac{xyz}{yz+x^2+xy+xz}=\frac{xyz}{y\left(x+z\right)+x\left(x+z\right)}\)

\(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}\)

Chứng minh tương tự : \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(y+z\right)\left(y+x\right)}\)

                                        \(\frac{3z}{1+z^2}=\frac{3xyz}{\left(x+z\right)\left(x+y\right)}\)

Khi đó VT \(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}+\frac{2xyz}{\left(y+z\right)\left(y+x\right)}+\frac{3xyz}{\left(x+z\right)\left(z+y\right)}\)

\(=\frac{xyz\left[y+z+2\left(z+x\right)+3\left(x+y\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(đpcm\right)\)

( mình đang vội nên làm hơi tắt mong bạn thông cảm )

28 tháng 7 2016

\(Q=\left(1+\frac{\alpha}{x}\right)\left(1+\frac{\alpha}{y}\right)\left(1+\frac{\alpha}{z}\right)=\left(\frac{\alpha+x}{x}\right)\left(\frac{\alpha+y}{y}\right)\left(\frac{\alpha+z}{z}\right)\)

Mà  \(\alpha=x+y+z\)  (theo gt) nên ta có thể viết  \(Q\)  như sau:

\(Q=\left(\frac{2x+y+z}{x}\right)\left(\frac{x+2y+z}{y}\right)\left(\frac{x+y+2z}{z}\right)=\left(2+\frac{y+z}{x}\right)\left(2+\frac{x+z}{y}\right)\left(2+\frac{x+y}{z}\right)\)

Đặt  \(a=\frac{y+z}{x};\)  \(b=\frac{x+z}{y};\)  và  \(c=\frac{x+y}{z}\)  \(\Rightarrow\)  \(a,b,c>0\)

Khi đó, biểu thức  \(Q\)  được biểu diễn theo ba biến  \(a,b,c\)  như sau:

\(Q=\left(2+a\right)\left(2+b\right)\left(2+c\right)=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc+8\)

\(\Rightarrow\)  \(Q-8=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc\)

Mặt khác, ta lại có:

\(a+b+c=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)

nên   \(a+b+c+3=\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)

\(\Rightarrow\) \(a+b+c+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Lại có:   \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\text{ (1)}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\text{ (2)}\end{cases}}\)   (theo bđt  \(Cauchy\)  lần lượt cho hai bộ số gồm các số không âm)

Nhân hai bđt  \(\left(1\right);\)  và  \(\left(2\right)\)  vế theo vế, ta được bđt mới là:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

Theo đó,  \(a+b+c+3\ge9\)  tức là  \(a+b+c\ge6\)

\(\Rightarrow\)  \(4\left(a+b+c\right)\ge24\)  \(\left(\alpha\right)\)

Bên cạnh đó, ta cũng sẽ chứng minh  \(abc\ge8\)  \(\left(\beta\right)\)

Thật vậy, ta đưa vế trái bđt cần chứng minh thành một biểu thức mới.

\(VT\left(\beta\right)=abc=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{xyz}=\frac{8xyz}{xyz}=8=VP\left(\beta\right)\)

Vậy, bđt  \(\left(\beta\right)\)  được chứng minh.

Từ đó, ta có thể rút ra được một bđt mới.

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge3\sqrt[3]{8^2}=12\) (theo cách dẫn trên)

\(\Rightarrow\) \(2\left(ab+bc+ca\right)\ge24\)  \(\left(\gamma\right)\)

Cộng từng vế 3 bđt  \(\left(\alpha\right);\)  \(\left(\beta\right)\)  và  \(\left(\gamma\right)\), ta được:

\(Q-8\ge24+8+24=56\)

Do đó,  \(Q\ge64\)

Dấu   \("="\)  xảy ra khi và chỉ khi  \(a=b=c\)  \(\Leftrightarrow\)  \(x=y=z=2\)

Vậy,  \(Q_{min}=64\)  khi  \(\alpha=6\)

11 tháng 1 2015

Bai 1: Ap dung BDT Bunhiacopxki ta co:

         \(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)

         \(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)

         \(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)

         \(= (a+b+c)(x+y+z)\) 

   =>  \(Q.E.D\)

11 tháng 1 2015

Tiep bai 4:Ta co:

               BDT <=>  \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)

    Sau khi khai trien con:   \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)

               Ap dung BDT Cosi ta co:

                                       \(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)

              Lam tuong tu ta co:  \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)

                                        \(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)

              Lam tuong tu ta co:  \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)

Cong (1) voi (2) ta co:      VT\(≥ 3(xy+yz+zx)\)(*)

               Voi cach lam tuong tu ta cung duoc:  VT\(≥ 3(x+y+z) \)(**)

Tu (*) va (**) suy ra :   \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)

                           <=>   VT \(≥ 2(x+y+z)+xy+yz+zx\)

                            =>   \(Q.E.D\)

1 tháng 6 2018

Ta có : \(\frac{x^3}{z+x^2}=\frac{x^3+xz-xz}{z+x^2}=x-\frac{xz}{z+x^2}\ge x-\frac{xz}{2x\sqrt{z}}=x-\frac{\sqrt{z}}{2}\ge x-\frac{z+1}{4}\) (Cosi)

Tương tự \(\hept{\begin{cases}\frac{y^3}{x+y^2}\ge y-\frac{x+1}{4}\\\frac{z^3}{y+z^2}\ge z-\frac{y+1}{4}\end{cases}}\)

\(\Rightarrow\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\)

Mà \(xy+yz+xz=3xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\Rightarrow x+y+z\ge3\)

\(\Rightarrow\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

1 tháng 6 2018

bước cuối sai \(\frac{3}{2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) trong khi \(3\le x+y+z\) ?? :D

23 tháng 8 2016

câu nào cx ghi là lớp 8 nhưng thực ra lớp 9 cx k nổi vc

23 tháng 8 2016

lớp 8 đó anh Thắng ạ =.="