K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

Để giải bài toán này đầu tiên ta có một nhận xét: Với mọi số dương \(x>0\) thì \(2x^3\ge3x^2-1.\)  Thực vậy xét hiệu hai vế ta có \(2x^3-3x^2+1=\left(x-1\right)^2\left(2x+1\right)\ge0.\)

Bây giờ, gọi \(D,E,F\)  là chân các đường cao kẻ từ \(A,B,C\).  Theo hệ thức lượng trong tam giác vuông (liên hệ giữa cạnh và hình chiếu) ta có:   Đối với tam giác vuông \(\Delta A'BC\)  và đường cao \(A'D\)  thì \(\frac{A'B^2}{A'C^2}=\frac{DB}{DC}\). Tương tự ta cũng có \(\frac{B'C^2}{B'A^2}=\frac{EC}{EA},\frac{C'A^2}{C'B^2}=\frac{FA}{FB}.\)  Suy ra  \(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}=\frac{DB}{DC}+\frac{EC}{EA}+\frac{FA}{FB}\)

Vì ba đường cao đồng quy nên theo định lý Ceva  \(\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}=1\).  Do đó theo bất đẳng thức Cô-Si ta được

\(\frac{DB}{DC}+\frac{EC}{EA}+\frac{FA}{FB}\ge3\sqrt[3]{\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}}=3.\)  Vì vậy mà \(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}\ge3.\)

Từ đó áp dụng Nhận xét ta thu được \(2\left(\frac{A'B^3}{A'C^3}+\frac{B'C^3}{B'A^3}+\frac{C'A^3}{C'B^3}\right)\ge3\left(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}\right)-3\ge3\cdot3-3=6.\)

Vì vậy ta được \(\frac{A'B^3}{A'C^3}+\frac{B'C^3}{B'A^3}+\frac{C'A^3}{C'B^3}\ge3.\) 

Dấu bằng xảy ra khi và chỉ khi D,E,F là trung điểm ba cạnh AB,BC,CA và điều đó có nghĩa là tam giác ABC đều.

17 tháng 8 2015

Để giải bài toán này đầu tiên ta có một nhận xét: Với mọi số dương \(x>0\) thì \(2x^3\ge3x^2-1.\)  Thực vậy xét hiệu hai vế ta có \(2x^3-3x^2+1=\left(x-1\right)^2\left(2x+1\right)\ge0.\)

Bây giờ, gọi \(D,E,F\)  là chân các đường cao kẻ từ \(A,B,C\).  Theo hệ thức lượng trong tam giác vuông (liên hệ giữa cạnh và hình chiếu) ta có:   Đối với tam giác vuông \(\Delta A'BC\)  và đường cao \(A'D\)  thì \(\frac{A'B^2}{A'C^2}=\frac{DB}{DC}\). Tương tự ta cũng có \(\frac{B'C^2}{B'A^2}=\frac{EC}{EA},\frac{C'A^2}{C'B^2}=\frac{FA}{FB}.\)  Suy ra  \(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}=\frac{DB}{DC}+\frac{EC}{EA}+\frac{FA}{FB}\)

Vì ba đường cao đồng quy nên theo định lý Ceva  \(\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}=1\).  Do đó theo bất đẳng thức Cô-Si ta được

\(\frac{DB}{DC}+\frac{EC}{EA}+\frac{FA}{FB}\ge3\sqrt[3]{\frac{DB}{DC}\cdot\frac{EC}{EA}\cdot\frac{FA}{FB}}=3.\)  Vì vậy mà \(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}\ge3.\)

Từ đó áp dụng Nhận xét ta thu được \(2\left(\frac{A'B^3}{A'C^3}+\frac{B'C^3}{B'A^3}+\frac{C'A^3}{C'B^3}\right)\ge3\left(\frac{A'B^2}{A'C^2}+\frac{B'C^2}{B'A^2}+\frac{C'A^2}{C'B^2}\right)-3\ge3\cdot3-3=6.\)

Vì vậy ta được \(\frac{A'B^3}{A'C^3}+\frac{B'C^3}{B'A^3}+\frac{C'A^3}{C'B^3}\ge3.\) 

Dấu bằng xảy ra khi và chỉ khi D,E,F là trung điểm ba cạnh AB,BC,CA và điều đó có nghĩa là tam giác ABC đều.

Nhớ thanks nhé!

 


 

19 tháng 2 2020

Định lý Ceva phải không?

19 tháng 2 2020

Mình cũng không biết nhưng nếu bạn nghĩ như vậy thì hãy thử làm xem ạ!

15 tháng 7 2018

a) Kẻ HD//AB, HE//AC

−>AD=HE;AE=AH
Theo BĐT trong tam giác :

AH < AE+HE = AE+AD

xét  ΔHDC vuông tại H :HC<DC

       ΔBHE vuông tại H : HB<BE

−> HA+HB+HC < AE+AD+BE+DC = AB+AC

chứng minh tương tự:

HA+HB+HC<AB+BC

HA+HB+HC<AC+BC

  -> có : 3(HA+HB+HC)<2(AB+AC+BC)

-> ( HA + HB + HC ) x \(\frac{3}{2}\)
 < AB + AC + BC

bây giờ mik làm có muộn lắm ko bạn???

NV
20 tháng 4 2023

Gọi D, E, F lần lượt là trung điểm A'A, BC và MN

\(\left\{{}\begin{matrix}MN||B'C'\\DN||AB'\end{matrix}\right.\) (đường trung bình tam giác) \(\Rightarrow\left(AB'C'\right)||\left(DNM\right)\)

\(\Rightarrow\) Góc giữa (AB'C') bằng góc giữa (DNM) và (BCMN)

\(MN\perp A'F\) (A'MN là tam giác đều), và \(A'A\perp\left(A'B'C'\right)\Rightarrow A'A\perp MN\)

\(\Rightarrow MN\perp\left(A'AEF\right)\) \(\Rightarrow\)  góc giữa (DNM) và (BCMN) là \(\widehat{DFE}\) nếu nó là góc nhọn và \(180^0-\widehat{DFE}\) nếu nó là góc tù

\(MN=\dfrac{1}{2}B'C'=\sqrt{3}\Rightarrow A'F=\dfrac{MN\sqrt{3}}{2}=\dfrac{3}{2}\) (trung tuyến tam giác đều)

\(\Rightarrow DF=\sqrt{A'F^2+A'D^2}=\dfrac{\sqrt{13}}{2}\)

\(AE=\dfrac{AB\sqrt{3}}{2}=3\Rightarrow DE=\sqrt{AD^2+AE^2}=\sqrt{10}\)

Gọi G là trung điểm AE \(\Rightarrow FG\perp\left(ABC\right)\Rightarrow\left\{{}\begin{matrix}FG=A'A=2\\GE=\dfrac{1}{2}AE=\dfrac{3}{2}\end{matrix}\right.\)

\(EF=\sqrt{FG^2+EG^2}=\dfrac{5}{2}\)

Áp dụng định lý hàm cos:

\(cos\widehat{DFE}=\dfrac{DF^2+EF^2-DE^2}{2DF.EF}=...\Rightarrow\widehat{DFE}=...\)

NV
20 tháng 4 2023

loading...