K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Vì x,y không âm

=> \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}\ge0\\9+\sqrt{xy}>0\end{cases}}\)

Áp dụng bất đẳng thức cô-si cho 2 bất đẳng thức trên, ta có

\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}\ge2.\sqrt{\sqrt{x}.\sqrt{y}}=2.\sqrt{\sqrt{xy}}=2\sqrt[4]{xy}\\9+\sqrt{xy}\ge2.\sqrt{9.\sqrt{xy}}=2.3.\sqrt{\sqrt{xy}}=6.\sqrt[4]{xy}\end{cases}}\)

Ta có:

\(9+\sqrt{xy}\ge6.\sqrt[4]{xy}\)

=>  \(\frac{12\sqrt{xy}}{9+\sqrt{xy}}\le\frac{12\sqrt{xy}}{6\sqrt[4]{xy}}=2.\sqrt{\frac{xy}{\sqrt{xy}}}=2.\sqrt{\sqrt{xy}}=2\sqrt[4]{xy}\)

Mà \(\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\)

=>  \(\sqrt{x}+\sqrt{y}\ge\frac{12\sqrt{xy}}{9+\sqrt{xy}}\)

Dấu "=" xảy ra khi x = y và \(\sqrt{xy}=9\Leftrightarrow xy=81\)

=> Dấu "=" xảy ra khi x = y = 9 

14 tháng 10 2023

Do \(x>y>z>0\), nên ta có:

\(\left\{{}\begin{matrix}x+y\ge2\sqrt{xy}\\y+z\ge2\sqrt{yz}\\x+z\ge2\sqrt{xz}\end{matrix}\right.\) (bất đẳng thức Cô-si)

Cộng ba bất đẳng thức theo từng vế, ta được:

\(x+y+y+z+x+z\ge2\sqrt{xy}+2\sqrt{yz}+2\sqrt{xz}\)

\(\Leftrightarrow2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\) (điều phải chứng minh).

AH
Akai Haruma
Giáo viên
14 tháng 10 2023

Lời giải:
Áp dụng BĐT Cô-si cho các số không âm, ta có:

$x+y\geq 2\sqrt{xy}$

$y+z\geq 2\sqrt{yz}$

$z+x\geq 2\sqrt{zx}$

$\Rightarrow x+y+y+z+z+x\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})$

$\Rightarrow x+y+z\geq \sqrt{xy}+\sqrt{yz}+\sqrt{zx}$

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z$

Áp dụng bđt AM-GM ta có

\(x^2-xy+y^2\ge x^2+y^2-\frac{x^2+y^2}{2}=\frac{x^2+y^2}{2}\)

\(\Rightarrow\frac{x+y}{x^2-xy+y^2}\le\frac{2\left(x+y\right)}{x^2+y^2}\le\frac{2\sqrt{2\left(x^2+y^2\right)}}{x^2+y^2}=\frac{2\sqrt{2}}{\sqrt{x^2+y^2}}\)

Dấu "=" xảy ra khi x=y=1

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

26 tháng 1 2022

Vì x;y trái dấu => 2 trường hợp

TH1  y < 0 ; x > 0

TH2 x < 0 ; y > 0

Xét TH1 ta có : \(\frac{xy-x^2}{\sqrt{\frac{-x}{y}}}=\frac{-x\left(x-y\right)}{\sqrt{-\frac{x}{y}}}=\frac{-x\left(x-y\right)}{\sqrt{-\frac{1}{y}}.\sqrt{x}}=\frac{-\left(x-y\right)\sqrt{x}}{\sqrt{-\frac{1}{y}}}=-\left(x-y\right)\left(\sqrt{x.\left(-y\right)}\right)\) ;

 \(\frac{xy-y^2}{\sqrt{-\frac{y}{x}}}=\frac{y\left(x-y\right)}{\sqrt{-y}.\sqrt{\frac{1}{x}}}=\frac{-\left(-y\right)\left(x-y\right)}{\sqrt{-y}.\sqrt{\frac{1}{x}}}=-\left(x-y\right)\left(\sqrt{x\left(-y\right)}\right)\)

=> ĐPCM 

Xét TH2 ta được \(\frac{xy-x^2}{\sqrt{-\frac{x}{y}}}=\frac{-x\left(x-y\right)}{\sqrt{-x}.\sqrt{\frac{1}{y}}}=\left(x-y\right)\left(\sqrt{-xy}\right)\)

\(\frac{xy-y^2}{\sqrt{\frac{-y}{x}}}=\frac{y\left(x-y\right)}{\sqrt{\frac{1}{-x}}.\sqrt{y}}=\sqrt{-xy}\left(x-y\right)\)

=> ĐPCM 

2 tháng 4 2021

Đặt \(A=\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)

Ta có:

\(x^2+xy+yz+zx=x+xyz=x\left(x+yz\right)\)

\(\Rightarrow\frac{x\left(x+yz\right)}{x}=\frac{x^2+xy+yz+zx}{x}\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+zx}{x}=\frac{\left(x^2+xy\right)+\left(yz+zx\right)}{x}=\frac{\left(x+z\right)\left(x+y\right)}{x}\)

\(\Rightarrow\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)

Vì x, y, z >0 nên áp dụng bất đẳng thức Bunhiacopxki cho 2 số dương, ta được:

\(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{x^2}.+\sqrt{yz}\right)^2\)

\(\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)

\(\Rightarrow\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\)

Do đó \(\sqrt{x+yz}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\left(1\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{y+xz}\ge\frac{y+\sqrt{xz}}{\sqrt{y}}\left(2\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{z+xy}\ge\frac{z+\sqrt{xy}}{\sqrt{z}}\left(3\right)\)

Từ (1), (2) và (3), ta được:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)\(\ge\frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{zx}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{yz+zx+xy}{\sqrt{xyz}}\)

 \(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}\)(vì \(xy+yz+zx=xyz\))

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\xy+yz+zx=xyz\end{cases}}\Leftrightarrow x=y=z=3\)

Vậy với x, y, z là các số thực dương thỏa mãn xy + yz + zx =xyz thì:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\).

\(\)

15 tháng 10 2021

\(A=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}+\sqrt{y}\\ A=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\)

Đề sai

15 tháng 10 2021

\(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\)

\(=2\sqrt{x}\)

Đề lạ thế bạn ơi! Vế trái luôn không âm mà vế phải luôn không dương nên đây là điều hiển nhiên.

Mình nghĩ đề phải chứng minh thế này:

\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

Nếu thế thì cách làm như sau:

Ta có: Do x, y, z không âm nên:

\(\left\{{}\begin{matrix}\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(\sqrt{y}-\sqrt{z}\right)^2\ge0\\\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-2\sqrt{xy}\ge0\\y+z-2\sqrt{yz}\ge0\\z+x-2\sqrt{xz}\ge0\end{matrix}\right.\)

\(\Rightarrow2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}=\sqrt{y}=\sqrt{z}\Leftrightarrow x=y=z\)