K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 3 2019

Bài 1: Giải trâu biến đổi tương đương với tử mẫu các phân thức đều dương:

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\Leftrightarrow\frac{2+x^2+y^2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(2+x^2+y^2\right)\left(1+xy\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow1+xy+\left(1+x^2+y^2\right)\left(1+xy\right)\ge2\left(1+x^2+y^2\right)+2x^2y^2\)

\(\Leftrightarrow\left(1+x^2+y^2\right)\left(xy-1\right)+1+xy-2x^2y^2\ge0\)

\(\Leftrightarrow\left(1+x^2+y^2\right)\left(xy-1\right)-\left(xy-1\right)\left(2xy+1\right)\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(x^2+y^2-2xy\right)\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) (luôn đúng \(\forall xy\ge1\))

Dấu "=" xảy ra khi \(x=y\) hoặc \(xy=1\)

Bài 2:

Với \(x\ne0\) ta có:

\(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=x^2-2.x.\frac{1}{x}+\frac{1}{x^2}+2+x^2-2.x.\frac{y}{2}+\left(\frac{y}{2}\right)^2+xy\)

\(=\left(x-\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2+xy+2\ge xy+2\)

\(\Rightarrow xy+2\le4\Rightarrow xy\le2\)

\(\Rightarrow xy_{max}=2\) khi \(\left\{{}\begin{matrix}x-\frac{1}{x}=0\\x-\frac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

8 tháng 3 2019

Bài 1: cách khác:

\(\Leftrightarrow\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)

\(\Leftrightarrow\frac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(xy-x^2\right)\left(1+y^2\right)+\left(xy-y^2\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Rightarrow-x\left(x-y\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(-x-xy^2+y+x^2y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\ge0\left(LĐ\forall xy\ge1\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

a)

Coi đây là pt bậc hai ẩn $y$. Để pt có nghiệm nguyên thì:

$\Delta'=x^2+3x+2=t^2$ với $t\in\mathbb{Z}$)

$\Rightarrow 4x^2+12x+8=4t^2$

$\Leftrightarrow (2x+3)^2-1=(2t)^2$

$\Leftrightarrow 1=(2x+3-2t)(2x+3+2t)$

Xét 2 TH sau:

TH1: $2x+3-2t=2x+3+2t=1$

$\Rightarrow x=-1; y=1$

TH2: $2x+3-2t=2x+3+2t=-1$

$\Rightarrow x=-2; y=2$

Vậy.......

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

b) Ta có:

\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)

\(\Leftrightarrow \frac{x^2+y^2+2}{x^2+y^2+x^2y^2+1}\geq \frac{2}{xy+1}\)

\(\Leftrightarrow (x^2+y^2+2)(xy+1)\geq 2(x^2+y^2+x^2y^2+1)\)

\(\Leftrightarrow xy(x^2+y^2-2xy)-(x^2+y^2-2xy)\geq 0\)

$\Leftrightarrow (x-y)^2(xy-1)\geq 0$

Luôn đúng với mọi $xy\geq 1$

Ta có đpcm.

Dấu "=" xảy ra khi $x=y$ hoặc $xy=1$

NV
17 tháng 5 2020

a/ \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+xy\right)\left(2+x^2+y^2\right)\ge2\left(1+x^2\right)\left(1+y^2\right)\)

\(\Leftrightarrow2+x^2+y^2+2xy+xy\left(x^2+y^2\right)\ge2+2x^2+2y^2+2x^2y^2\)

\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2+y^2-2xy\right)\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) (luôn đúng)

b/ Để biểu thức xác định \(\Rightarrow x\ne0\Rightarrow x^2\ge1\)

\(4=\frac{y^2}{4}+x^2+\frac{1}{x^2}+x^2\ge\frac{y^2}{4}+2\sqrt{\frac{x^2}{x^2}}+1\ge\frac{y^2}{4}+3\)

\(\Rightarrow\frac{y^2}{4}\le1\Rightarrow y^2\le4\Rightarrow\left[{}\begin{matrix}y^2=0\\y^2=1\\y^2=4\end{matrix}\right.\)

\(y^2=0\Rightarrow2x^2+\frac{1}{x^2}=4\Rightarrow2x^4-4x^2+1=0\) (ko tồn tại x nguyên tm)

\(y^2=1\Rightarrow2x^2+\frac{1}{x^2}=3\Rightarrow2x^4-3x^2+1=0\Rightarrow x^2=1\)

\(\Rightarrow\left(x;y\right)=...\)

\(y^2=4\Rightarrow2x^2+\frac{1}{x^2}=0\Rightarrow\) ko tồn tại x thỏa mãn

17 tháng 5 2020

tks nha

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

$xy+yz+xz=3xyz$

$\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3$

Đặt $\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)=(a,b,c)$ thì bài toán trở thành:

Cho $a,b,c>0$ thỏa mãn $a+b+c=3$. CMR $\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq a^2+b^2+c^2$

---------------------------------

Thật vậy:

Áp dụng BĐT AM-GM ta có:

$\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{2}{ab}$

$\frac{1}{b^2}+\frac{1}{c^2}\geq \frac{2}{bc}$

$\frac{1}{c^2}+\frac{1}{a^2}\geq \frac{2}{ac}$

Cộng theo vế và thu gọn: $\sum \frac{1}{a^2}\geq \sum \frac{1}{ab}=\frac{a+b+c}{abc}=\frac{3}{abc}$

Ta cần chứng minh $\frac{3}{abc}\geq a^2+b^2+c^2$ thì bài toán sẽ được chứng minh.

$\Leftrightarrow abc(a^2+b^2+c^2)\leq 3(*)$

Theo hệ quả BĐT AM-GM: $3abc=abc(a+b+c)\leq \frac{(ab+bc+ac)^2}{3}$

$\Rightarrow abc\leq \frac{(ab+bc+ac)^2}{9}$

$\Rightarrow abc(a^2+b^2+c^2)\leq \frac{(a^2+b^2+c^2)(ab+bc+ac)^2}{9}$

Mà:

$(a^2+b^2+c^2)(ab+bc+ac)^2\leq \left(\frac{a^2+b^2+c^2+ab+bc+ac+ab+bc+ac}{3}\right)^3=\frac{(a+b+c)^6}{27}=27$ theo AM-GM

Do đó: $abc(a^2+b^2+c^2)\leq \frac{27}{9}=3$. BĐT $(*)$ được CM

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$ hay $x=y=z=1$

26 tháng 9 2018

e ko bt

20 tháng 6 2019

2) Có: \(a+b+c=0\)

\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow VT=4\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-2abc\left(a+b+c\right)\right]\)

\(\Leftrightarrow VT=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2\)

Có: \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^2=c^2\Leftrightarrow2ab=c^2-a^2-b^2\)

Tương tự:...

\(VT=\text{Σ}_{cyc}\left(c^2-a^2-b^2\right)^2=2\left(a^4+b^4+c^4\right)=VP\)

AH
Akai Haruma
Giáo viên
25 tháng 1 2018

Lời giải:

Ta có:

\(\text{VT}=\frac{1}{x^2+y^2+2}+\frac{1}{y^2+z^2+2}+\frac{1}{z^2+x^2+2}\)

\(\Rightarrow 2\text{VT}=\frac{2}{x^2+y^2+2}+\frac{2}{y^2+z^2+2}+\frac{2}{z^2+x^2+2}\)

\(2\text{VT}=1-\frac{x^2+y^2}{x^2+y^2+2}+1-\frac{y^2+z^2}{y^2+z^2+2}+1-\frac{z^2+x^2}{z^2+x^2+2}\)

\(2\text{VT}=3-\left(\frac{x^2+y^2}{x^2+y^2+2}+\frac{y^2+z^2}{y^2+z^2+2}+\frac{z^2+x^2}{z^2+x^2+2}\right)=3-A\)

Áp dụng BĐT Cauchy-Schwarz:

\(A\geq \frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x^2+y^2+z^2)+6}=\frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x^2+y^2+z^2+xy+yz+xz)}(*)\)

Xét tử số:

\((\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2\)

\(=2(x^2+y^2+z^2)+2(\sqrt{(x^2+y^2)(x^2+z^2)}+\sqrt{(x^2+y^2)(y^2+z^2)}+\sqrt{(y^2+z^2)(z^2+x^2)})\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x^2+y^2)(x^2+z^2)}\geq \sqrt{(x^2+yz)^2}=x^2+yz\)

\(\sqrt{(x^2+y^2)(y^2+z^2)}\geq \sqrt{(xz+y^2)^2}=xz+y^2\)

\(\sqrt{(y^2+z^2)(z^2+x^2)}\geq \sqrt{(z^2+xy)^2}=z^2+xy\)

\(\Rightarrow \sum \sqrt{(x^2+y^2)(x^2+z^2)}\geq x^2+y^2+z^2+xy+yz+xz\)

\(\Rightarrow (\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2\geq 4(x^2+y^2+z^2)+2(xy+yz+xz)\)

\(\geq 3(x^2+y^2+z^2)+3(xy+yz+xz)=3(x^2+y^2+z^2+xy+yz+xz)\)

(theo BĐT AM-GM)

Do đó: Từ \((*)\Rightarrow A\geq \frac{3(x^2+y^2+z^2+xy+yz+xz)}{2(x^2+y^2+z^2+xy+yz+xz)}=\frac{3}{2}\)

\(\Rightarrow 2\text{VT}\leq 3-\frac{3}{2}=\frac{3}{2}\)

\(\Rightarrow \text{VT}\leq \frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

26 tháng 1 2018

We have: \(\dfrac{1}{x^2+y^2+2}=\dfrac{1}{x^2+y^2+z^2+2-z^2}\le\dfrac{1}{5-z^2}\)

Similarly and by adding them:

\(\dfrac{1}{5-x^2}+\dfrac{1}{5-y^2}+\dfrac{1}{5-z^2}\le\dfrac{3}{4}\left(\circledast\right)\)

We know that \(\dfrac{1}{5-x^2}\le\dfrac{3\left(x^2+x\right)}{8\left(x^2+x+1\right)}\)

\(\Leftrightarrow-\dfrac{\left(x-1\right)^2\left(3x^2+9x+8\right)}{8\left(x^2-5\right)\left(x^2+x+1\right)}\le0\) It's obviously

\(\Rightarrow L.H.S_{\left(\circledast\right)}\le\dfrac{3}{8}\left(\dfrac{x^2+x}{x^2+x+1}+\dfrac{y^2+y}{y^2+y+1}+\dfrac{z^2+z}{z^2+z+1}\right)\le\dfrac{3}{4}\)

The equality occur when \(x=y=z=1\)

Done!

NV
7 tháng 4 2019

\(VT=\sum\frac{x}{\sqrt{1+x^2}}=\sum\frac{x}{\sqrt{xy+xz+yz+x^2}}=\sum\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\frac{1}{2}\sum\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)\(\Rightarrow VT\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)