K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔDEF có \(DE^2+DF^2=FE^2\)

nên ΔDEF vuông tại D

9 tháng 3 2019

Ta có EF2=202=400

DE2+DF2=122+162=400

\(\Rightarrow\)EF2=DE2+DF2

Vậy tam giác DEF là tam giác vuông ( áp dụng định lí Py-ta-go đảo)

^-^ Học tốt nha^-^

22 tháng 3 2022

Xét tam giác DEF vuông tại F có:

     \(DE^2=EF^2+DF^2\) (Định lý Pytago)

=> \(15^2=12^2+DF^2\)

=> 225 = 144 + \(DF^2\)

=> \(DF^2=\) 225-144 = 81

=> DF = \(\sqrt{81}\) = 9

25 tháng 12 2018

a) Xét ΔDEF có \(FE^2=DE^2+DF^2\left(13^2=5^2+12^2\right)\)

nên ΔDEF vuông tại D(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DK là đường cao ứng với cạnh huyền FE, ta được:

\(DK\cdot FE=DE\cdot DF\)

\(\Leftrightarrow DK\cdot13=12\cdot5=60\)

hay \(DK=\dfrac{60}{13}\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔDKE vuông tại K, ta được:

\(KD^2+KE^2=DE^2\)

\(\Leftrightarrow KE^2=5^2-\dfrac{3600}{169}=\dfrac{625}{169}\)

hay \(KE=\dfrac{25}{13}\left(cm\right)\)

\(\Leftrightarrow S_{KDE}=\dfrac{KE\cdot KD}{2}=\dfrac{\dfrac{25}{13}\cdot\dfrac{60}{13}}{2}=\dfrac{1500}{169}\cdot\dfrac{1}{2}=\dfrac{750}{169}\left(cm^2\right)\)

a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có 

AB/DE=AC/DF

Do đó: ΔABC\(\sim\)ΔDEF

b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)

16 tháng 9 2023

limdim

14 tháng 2 2016

a) Dùng định lí py-ta-gô để chứng minh, ta thấy:
122 + 92 = 152
Vậy DEF là tam giác vuông. Tam giác này vuông tại E ( do DF là cạnh huyền )
b) Tia IE là tia đối của tia ED => 3 diểm I, E, D thẳng hàng và IE vuông góc với IF
Vậy cạnh cần tìm IF chính là cạnh huyền của tam giác vuông EFI.
Áp dụng định lí Pi-ta-gô, ta có:
IF2 = IE2 + EF2
IF2 = 52 + 122
IF2 = 25 + 144
IF2 = 169
IF = 13
Vậy độ dài IF là 13cm.

14 tháng 2 2016

Vẽ tam giác ta có hình...

Áp dụng định lí Pytago ta có

\(DE^2=DF^2+FE^2\\ \Rightarrow DF=\sqrt{15^2-12^2}=9\)