K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 
1/(1+a)+1/(1+b)+1/(1+c)≥2 
→1/(1+a)≥{1-1/(1+b)}+{1-1/(1+c)} 
↔1/(1+a)≥b/(1+b)+c/(1+c) 
≥2.√(bc)/{(1+b)(1+c)}(theo cosi) 
Hai bất đẳng thức tương tự rồi nhân vế với vế 
1/{(1+a)(1+b)(1+c)≥8.abc/{(1+a)(1+b)(1... 
↔abc≤1/8(dpcm)

TK NHA

19 tháng 8 2017

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)\)\(=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Tương tự ta có: 

4 tháng 10 2018

Ta có: \(\frac{1}{a+1}\ge2-\frac{1}{b+1}-\frac{1}{c+1}=\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự \(\frac{1}{b+1}\ge\frac{c}{c+1}+\frac{a}{a+1}\ge2\sqrt{\frac{ca}{\left(c+1\right)\left(a+1\right)}}\)

               \(\frac{1}{c+1}\ge\frac{a}{a+1}+\frac{b}{b+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân từng vế, ta có: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\le\frac{1}{8}\)

13 tháng 11 2018

bé hơn hoặc bằng 1 hay là 2 vậy bạn

13 tháng 11 2018

\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=3-\frac{1}{1+a}-\frac{1}{1+b}-\frac{1}{1+c}\le1\)

\(\Rightarrow T\frac{1}{1+a}\ge2\Rightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

T là pháp cộng với b,c luôn nha, lười ghi.

Tương tự ta có:\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\) và với c nữa

Nhân vế theo vế ta có đpcm

16 tháng 8 2018

Vô lí vì a+b+c=0\(\Rightarrow\frac{5}{a+b+c}\)không có đáp án

5 tháng 2 2017

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\left\{\begin{matrix}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\end{matrix}\right.\)

Cộng theo từng vế:

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) ( đpcm )

5 tháng 2 2017

Với a , b , c > 0

Ta có: \(a^2-2ab+b^2\ge0\)

\(\Rightarrow\) \(a^2+2ab+b^2\ge4ab\)

\(\Rightarrow\) \(\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\) \(\frac{a+b}{4ab}\ge\frac{1}{a+b}\)

\(\Rightarrow\) \(\frac{1}{a+b}\le\frac{1}{4b}+\frac{1}{4a}\)

\(\Rightarrow\) \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(1)

Chứng minh tương tự ta cũng có được:

\(\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\) (2)

\(\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\) (3)

Cộng (1), (2), (3) vế theo vế ta được:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

\(\Rightarrow\) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( ĐPCM)

20 tháng 11 2016

a)Ta có:\(\left(p-a\right)\left(p-b\right)\le\frac{2p-b-a}{2}=\frac{c^2}{4}\)

Tương tự ta có: \(\left(p-a\right)\left(p-c\right)\le\frac{b^2}{4};\left(p-b\right)\left(p-c\right)\le\frac{c^2}{4}\)

\(\Rightarrow\left[\left(p-a\right)\left(p-b\right)\left(p-c\right)\right]^2\le\left(\frac{abc}{8}\right)^2\)

\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\frac{abc}{8}\)

b)\(VT=\frac{2}{-a+b+c}+\frac{2}{a-b+c}+\frac{2}{a+b-c}\)

\(=\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}+\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\)

\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

c giải sau ăn cơm đã

31 tháng 5 2020

Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(VT=\Sigma\frac{a}{\sqrt{b^3+1}}=\Sigma\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\)

\(\ge\Sigma\frac{a}{\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}}=\Sigma\frac{2a}{b^2+2}=\Sigma\left(a-\frac{ab^2}{b^2+2}\right)\)

\(=\Sigma\left(a-\frac{2ab^2}{b^2+b^2+4}\right)\ge\Sigma\left(a-\frac{2ab^2}{3\sqrt[3]{4b^4}}\right)\)\(=\Sigma\left[a-\frac{a\sqrt[3]{2b^2}}{3}\right]=\Sigma\left[a-\frac{a\sqrt[3]{2.b.b}}{3}\right]\)

\(\ge\Sigma\left[a-\frac{a\left(2+b+b\right)}{9}\right]\)\(=\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{9}-\frac{2\left(ab+bc+ca\right)}{9}\)

\(=\frac{7\left(a+b+c\right)}{9}-\frac{2\left(ab+bc+ca\right)}{9}\)\(\ge\frac{7\left(a+b+c\right)}{9}-\frac{2.\frac{\left(a+b+c\right)^2}{3}}{9}=2\)

Đẳng thức xảy ra khi a = b = c = 2

10 tháng 11 2018

mình ghi nhầm cái số 1 nhỏ nha
mn nếu giải thì bỏ cái số đó đi

10 tháng 11 2018

+ ta có a,b,c thuộc [0,1] 
=> b^2 <= b và c^3 <= c 
=> a + b^2 + c^3 - ab - bc - ca <= a + b + c - (ab + bc + ca) 
+ mặt # a , b , c thuộc [0,1] 
=> (1 - a)(1 - b)(1 - c) >=0 
<> 1- a - b - c + ab + bc + ca - abc >=0 
<> a + b + c - (ab + bc + ca) <= 1 - abc 
=> a + b + c - (ab + bc + ca) <=1 (abc >= 0)

2 tháng 10 2017

\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{2\sqrt{bc}}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

hai cái kia tương tự rồi nhân cả ba cái lại ra được đpcm

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z