K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

 \(x^2+\frac{1}{x^2}=7\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)^2=49\)

\(\Leftrightarrow x^4+\frac{1}{x^4}+2=49\Leftrightarrow x^4+\frac{1}{x^4}=47\)

\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2=2209\Leftrightarrow x^8+\frac{1}{x^8}+2=2209\Leftrightarrow x^8+\frac{1}{x^8}=2207\)

6 tháng 7 2017

Ta có:

\(\left(x^2+\frac{1}{x^2}\right)^4=x^8+4x^6.\frac{1}{x^2}+6x^4.\frac{1}{x^4}+4x^2.\frac{1}{x^6}+\frac{1}{x^8}=7^4\)

\(\Leftrightarrow x^8+4x^4+6+\frac{4}{x^4}+\frac{1}{x^8}=2401\)(1)

Ta thấy x=0 không phải là nghiệm của phương trình nên ta có 

\(\left(1\right)\Leftrightarrow\left(x^8+\frac{1}{x^8}\right)+\left(4x^4+\frac{4}{x^4}\right)+6=2401\)

\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2-2.x^4.\frac{1}{x^4}+4\left(x^4+\frac{1}{x^4}\right)+6=2401\)

\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2+4\left(x^4+\frac{1}{x^4}\right)=2397\)(2)

Đặt \(x^4+\frac{1}{x^4}=t\)ta có:

\(\left(2\right)\Leftrightarrow t^2+4t=2397\)

\(\Leftrightarrow t^2+4t-2397=0\)

\(\Leftrightarrow\left(t^2-47t\right)+\left(51t-2397\right)=0\)

\(\Leftrightarrow t\left(t-47\right)+51\left(t-47\right)=0\)

\(\Leftrightarrow\left(t-47\right)\left(t+51\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-47=0\\t+51=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=47\\t=-51\end{cases}}}\)

Vì \(t=x^4+\frac{1}{x^4}\ge0\)nên \(t\ne-51\Rightarrow t=47\)

Ta lại có:

\(x^4+\frac{1}{x^4}=47\)

\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2-2.x^4.\frac{1}{x^4}=47^2\)

\(\Leftrightarrow x^4+\frac{1}{x^8}=2209\)

6 tháng 7 2017

Ta có:

\(\left(x^2+\frac{1}{x^2}\right)^2=x^4+\frac{1}{x^4}+2.x^4.\frac{1}{x^4}=7^2.\)

\(\Leftrightarrow x^4+\frac{1}{x^4}+2=49.\)

\(\Leftrightarrow x^4+\frac{1}{x^4}=47\)

\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2=47^2\)

\(\Leftrightarrow x^8+\frac{1}{x^8}+2.x^4.\frac{1}{x^4}=2209\)

\(\Leftrightarrow x^8+\frac{1}{x^8}+2=2209.\)

\(\Leftrightarrow x^8+\frac{1}{x^8}=2207\)

12 tháng 3 2015

\(x^2+\frac{1}{x^2}=7\Rightarrow\left(x^2+\frac{1}{x^2}\right)^2=49\Leftrightarrow x^4+2.x^2.\frac{1}{x^2}+\frac{1}{x^4}=49\Leftrightarrow x^4+2+\frac{1}{x^4}=49\)

\(\Leftrightarrow x^4+\frac{1}{x^4}=47\Rightarrow\left(x^4+\frac{1}{x^4}\right)^2=47^2\)

\(\Leftrightarrow x^8+2.x^4.\frac{1}{x^4}+\frac{1}{x^8}=2209\Rightarrow x^8+2+\frac{1}{x^8}=2209\Rightarrow x^8+\frac{1}{x^8}=2209-2=2207\)

6 tháng 7 2017

Ta có:

\(\left(x^2+\frac{1}{x^2}\right)^2=x^4+\frac{1}{x^4}+2.x^4.\frac{1}{x^4}=7^2\)

\(\Leftrightarrow x^4+\frac{1}{x^4}+2=49\)

\(\Leftrightarrow x^4+\frac{1}{x^4}=47\)

\(\Leftrightarrow\left(x^4+\frac{1}{x^4}\right)^2=47^2\)

\(\Leftrightarrow x^8+\frac{1}{x^8}+2.x^4.\frac{1}{x^4}=2209\)

\(\Leftrightarrow x^8+\frac{1}{x^8}+2=2209\)

\(\Leftrightarrow x^8+\frac{1}{x^8}=2207\)

23 tháng 2 2019

\(\left(x^2+\frac{1}{x^2}\right)^2=x^4+\frac{1}{x^4}+2\Rightarrow7^2=x^4+\frac{1}{x^4}+2\Rightarrow x^4+\frac{1}{x^4}=47\)

\(\left(x^4+\frac{1}{x^4}\right)^2=x^8+\frac{1}{x^8}+2\Rightarrow x^8+\frac{1}{x^8}=47^2-2=2207\)

27 tháng 2 2018

gọi A là vế trái của BĐT :

nếu \(x\ge1\) thi ta viết A dưới dạng \(x^7\left(x-1\right)+x\left(x-1\right)+1\)

do \(x\ge1\) nên A>0

nếu x<1 thì ta viết A dưới dạng \(x^8+x^2\left(1-x^5\right)+\left(1-x\right)\) Do x<1 nên \(1-x^5>0\), do đó A>0

mệnh đề đã được CM

26 tháng 7 2019

giúp minh với nha

Bài 5: 

a: \(8A=8+8^2+...+8^8\)

\(\Leftrightarrow7A=8^8-1\)

hay \(A=\dfrac{8^8-1}{7}\)

b: \(8B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\)

\(\Leftrightarrow8B=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\)

\(\Leftrightarrow8B=3^{16}-1\)

hay \(B=\dfrac{3^{16}-1}{8}\)

19 tháng 5 2017

Câu a.

Ta luôn có 

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)  (do a+b < a+b+c)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng theo từng vế rồi rút gọn ta đươc đpcm

19 tháng 5 2017

Cảm ơn b nhé. B biết làm.câu b c d không giúp m với