K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Ta có: \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)

\(=a+b+c-ab-bc-ca>0\)

\(=a+b+c-\frac{c}{ab}-\frac{a}{bc}-\frac{b}{ac}>0\)

\(\Leftrightarrow a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (Đúng)

Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) (Đpcm)

3 tháng 5 2017

Đặt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) là ( 1)

Ta có : \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)

\(=a+b+c-ab-bc-ca>0\)

\(=a+b+c-\dfrac{c}{ab}-\dfrac{a}{bc}-\dfrac{b}{ac}>0\)

\(\Leftrightarrow a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 2 )

BĐT ( 2 ) đúng . Từ đây ta có thể thấy BĐt ( 1 ) cũng đúng :D

9 tháng 11 2019

Ta có: \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow a+b+c=\frac{ab+bc+ac}{abc}\)

\(\Leftrightarrow a+b+c=ab+bc+ac\)

\(\Leftrightarrow ab+bc+ac-a-b-c=0\)

\(\Leftrightarrow ab+bc+ac-a-b-c+abc-1=0\)(Vì abc = 1)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)

\(\Leftrightarrow\)Hoặc a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0

\(\Leftrightarrow\)Hoặc a = 1 hoặc b = 1 hoặc c = 1 

Vậy có ít nhất một trong ba số a,b,c bằng 1 (đpcm)

10 tháng 8 2018

Cho abc=0 thì không chứng minh được, a+b+c=0 là đủ rồi

Ta có: a+b+c=0 => a+b=-c

=>(a+b)2=(-c)2

=>a2+2ab+b2=c2

=>a2+b2-c2=-2ab

Tương tự ta có: b2+c2-a2=-2bc ; c2+a2-b2=-2ca

=>\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\) (đpcm)

31 tháng 8 2018

Cho \(abc=0\)thì không chứng minh được, \(a+b+c=0\)là đủ rồi.

Ta có: \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)

\(\Rightarrow a^2+2ab+b^2=c^2\)

\(\Rightarrow a^2+b^2-c^2=-2ab\)

Tương tự ta có: \(b^2+c^2-a^2=-2ab;c^2+a^2-b^2=-2ca\)

\(\Rightarrow\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=\frac{a+b+c}{-2abc}=0\)

4 tháng 8 2017

Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) và BĐT cần chứng minh là:

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel và AM-GM ta có:

\(VT=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}=VP\)

Xảy ra khi \(x=y=z=1 \Rightarrow a=b=c=1\)

4 tháng 8 2017

ai tick cho mik , mik tick lại cho !^__<hahanhớ giải câu hỏi nhé ! thanks

20 tháng 4 2017

Từ (a-1)(b-1)(c-1)>0 (*)

<=>(ab-b-a+1)(c-1)>0

<=> abc-ab-bc+b-ac+a+c-1>0

<=> a+b+c-ab-ac-bc>0

<=> a+b+c-\(\dfrac{abc}{c}-\dfrac{abc}{b}-\dfrac{abc}{a}\)>0

<=> a+b+c - \(\dfrac{1}{c}-\dfrac{1}{b}-\dfrac{1}{a}>0\)

<=> \(a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 1)

(1) đúng => (*) đúng

2 tháng 5 2017

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) = \(\overline{\frac{\overline{bc}+\overline{ac}+\overline{ac}}{\overline{abc}}}\) = ab + bc + ca 
=> a + b + c = ab + bc + ca 
=> a + b + c - ab - bc - ca = 0 
=> a + b + c - ab - bc - ac + abc - 1 = 0 
=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0 
=> - a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0 
=> (b - 1)(- a + 1 - c + ac) = 0 
=> (b - 1)[( - a + 1) + (ac - c)] = 0 
=> (b - 1)[ - (a - 1) + c(a - 1)] = 0 
=> (a - 1)(b - 1)(c - 1) = 0 
=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0 
=> a = 1 hoặc b = 1 hoặc c = 1 

Vậy (a - 1)(b - 1)(c - 1) > 1

2 tháng 5 2017

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)

\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)>0\)

\(\Leftrightarrow abc-ac-bc+c-ab+a+b-1>0\)

\(\Leftrightarrow-ab-bc-ab+a+b+c>0\)

\(\Leftrightarrow a+b+c>ab+ac+bc\)

\(\Leftrightarrow a+b+c>\frac{abc}{a}+\frac{abc}{b}+\frac{abc}{c}\)

\(\Leftrightarrow a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (thỏa mãn đề bài)

Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)