K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2015

\(vìa;b>0\Rightarrow\frac{a}{a+b}\frac{b}{b+c}\) (2)

.................................................\(\sqrt{\frac{c}{a+c}}>\frac{c}{c+a}\) (3)

Cộng vé với vế của từng bất dẳng thức => ĐPCM

9 tháng 6 2015

cái này hình như sai đề bạn ạ. vì : a,b,c >0 => a+b , b+c, c+a >0

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>0\)

với \(A>0\) ta luôn có: \(A>\sqrt{A}\) như 2 > căn 2 chẳng hạn

=> \(\frac{a}{a+b}>\sqrt{\frac{a}{a+b}}\) hay \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\)

22 tháng 8 2015

Ta sử dụng bất đẳng thức Chebyshev sau đây:

Nếu các số \(a\ge b\ge c,x\ge y\ge z\) thì \(3\left(ax+by+cz\right)\ge\left(a+b+c\right)\left(x+y+z\right).\)

Thực vậy bất đẳng thức cần chứng minh tương đương với \(\left(a-b\right)\left(x-y\right)+\left(b-c\right)\left(y-z\right)+\left(c-a\right)\left(z-x\right)\ge0.\)

Không mất tính tổng quát, giả sử \(a\ge b\ge c\). Khi đó bất đẳng thức cần chứng minh tương đương với

\(\frac{a+b}{\sqrt{c\left(a+b\right)}}+\frac{b+c}{\sqrt{a\left(b+c\right)}}+\frac{c+a}{\sqrt{b\left(c+a\right)}}\ge2\left(\frac{c}{\sqrt{c\left(a+b\right)}}+\frac{a}{\sqrt{a\left(b+c\right)}}+\frac{b}{\sqrt{b\left(c+a\right)}}\right)\)

\(\leftrightarrow\frac{a+b-2c}{\sqrt{c\left(a+b\right)}}+\frac{c+a-2b}{\sqrt{b\left(c+a\right)}}+\frac{b+c-2a}{\sqrt{a\left(b+c\right)}}\ge0\)         (***)

Tuy nhiên ta có \(a+b-2c\ge c+a-2b\ge b+c-2a\)   và \(\frac{1}{\sqrt{c\left(a+b\right)}}\ge\frac{1}{\sqrt{b\left(c+a\right)}}\ge\frac{1}{\sqrt{a\left(b+c\right)}}\)  nên theo bất đẳng thức Chebyshev 

\(\frac{a+b-2c}{\sqrt{c\left(a+b\right)}}+\frac{c+a-2b}{\sqrt{b\left(c+a\right)}}+\frac{b+c-2a}{\sqrt{a\left(b+c\right)}}\)

\(\ge\frac{1}{3}\left(a+b-2c+b+c-2a+c+a-2b\right)\left(\frac{1}{\sqrt{c\left(a+b\right)}}+\frac{1}{\sqrt{b\left(c+a\right)}}+\frac{1}{\sqrt{a\left(b+c\right)}}\right)=0.\)

Vậy bất đẳng thức (***) đúng, nên ta có điều phải chứng minh.

16 tháng 7 2020

tai sao \(\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)

NV
16 tháng 7 2020

\(\sqrt{\frac{a}{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)

Tương tự: \(\sqrt{\frac{b}{a+c+d}}\ge\frac{2b}{a+b+c+d}\) ; \(\sqrt{\frac{c}{a+b+d}}\ge\frac{2c}{a+b+c+d}\); \(\sqrt{\frac{d}{a+b+c}}\ge\frac{2d}{a+b+c+d}\)

Cộng vế với vế: \(VT\ge\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

Dấu "=" không xảy ra nên \(VT>2\)

8 tháng 6 2015

Ta có:\(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}

3 tháng 2 2017

Theo BĐT AM-GM ta có: \(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)

Tương tự ta cũng có BĐT tương tự, cộng theo vế ta có:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge2\left(I\right)\)

Mà \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\left(1\right)\) .Vì \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\Leftrightarrow\left(a+c\right)\left(a+b\right)>a\left(a+b+c\right)\)

\(\Leftrightarrow a\left(a+b\right)+c\left(a+b\right)>a\left(a+b\right)+ac\)

\(\Leftrightarrow c\left(a+b\right)>ac\Leftrightarrow a+b>a\) (luôn đúng)

Tương tự ta có: \(\frac{a+b}{a+b+c}>\frac{b}{b+c}\left(2\right);\frac{c+a}{a+b+c}>\frac{c}{a+c}\left(3\right)\)

Ta có: \(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow\frac{a}{a+b}+\frac{b}{b+a}+\frac{c}{a+c}< 2\left(II\right)\)

Từ (I) và (II) ta thu được điều phải chứng minh

4 tháng 11 2017

giỏi thì làm đê

10 tháng 10 2018

mk k giỏi

ko lm đc