Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B O C D M E F K I N L
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

a, Chú ý: A M O ^ = A I O ^ = A N O ^ = 90 0
b, A M B ^ = M C B ^ = 1 2 s đ M B ⏜
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp => A M N ^ = A I N ^
BE//AM => A M N ^ = B E N ^
=> B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp => B I E ^ = B N M ^
Chứng minh được: B I E ^ = B C M ^ => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = 1 2 AO
Từ G kẻ GG'//IK (G' Î MK)
=> G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O không đổi (1)
MG' = 2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)

Mình không vẽ hình được mong bạn thông cảm
a, Vì tứ giác MANB nội tiếp
=>\(IN.IM=IA.IB=IA^2\)(I là trung điểm của AB)
Vậy IN.IM=IA^2
b,
VÌ AB là tiếp tuyến chắn cung AP của đường tròn O'
=>PAB=AMP
MÀ AMP=ABN (tứ giác AMBN nội tiếp)
=>PAB=ABN
MÀ I là trung điểm của AB
=> I là trung điểm của NP
=> tứ giác ANBP là hình bình hành
Vậy tứ giác ANBP là hình bình hành
c,Vì tứ giác ANBP là hình bình hành
nên \(AN//BP\)
=>NAB=ABP
Lại có NAB=NMB( tứ giác AMBN nội tiếp)
=>ABP=NMB
=> IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP
Vậy IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP
d,Từ G kẻ GK,GH lần lượt song song với AP,BP(\(K,H\in AB\))
=> \(\hept{\begin{cases}IK=\frac{1}{3}IA\\IH=\frac{1}{3}IB\end{cases}}\)và KGH=APB
MÀ I,A,B cố định
=> H,K cố định
Ta có APB=KGH
Mà APB =ANB( tứ giác ANBP là hbh)
=> KGH=ANB
MÀ AB cố định ,ANB là góc nội tiếp chắn cung AB =
=> ANB không đổi => KGH không đổi
MÀ K,H cố định
=> G thuộc cung tròn cố định
Vậy khi M di chuyển thì G thuộc cung tròn cố định

Đáp án:
Giải thích các bước giải:
Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3
Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3
=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)
=> G thuộc cung tròn cố định chứa ^MGK không đổi nhận MK là dây
Học tốt