K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

Nếu x>3 ta có: 3<x<y<z<t<u, từ phương trình đã cho suy ra:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{u}\le\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{743}{840}< 1\)

Vậy x = 3

Từ đó suy ra: \(\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{y}=\frac{2}{3}\) . Nếu y>4, lập luận tương tự, ta có:

\(\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{u}\le\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{533}{840}< \frac{2}{3}\)

Suy ra: y = 4

Tiếp tục lập luận tương tự như trên ta có các số tự nhiên cần tìm là: x = 3; y = 4 ; z = 5; t = 6; u = 20

P/S: Không chắc lắm ạ!

24 tháng 6 2018

câu này nằm trong đề thi học sinh giỏi tỉnh nghệ an năm ngoái

1 tháng 6 2020

Theo giả thiết cho:  \(xyzt=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1-t\right)\)

\(\Rightarrow\frac{1-x}{x}.\frac{1-y}{y}.\frac{1-z}{z}.\frac{1-t}{t}=1\)

Đặt \(\left(\frac{1-x}{x},\frac{1-y}{y},\frac{1-z}{z},\frac{1-t}{t}\right)\rightarrow\left(a,b,c,d\right)\). Lúc đó thì giả thiết được viết lại thành abcd = 1 

Ta có: \(a=\frac{1-x}{x}=\frac{1}{x}-1\Rightarrow x=\frac{1}{a+1}\Rightarrow x^2=\frac{1}{\left(a+1\right)^2}\)

Tương tự, ta có: \(y^2=\frac{1}{\left(b+1\right)^2};z^2=\frac{1}{\left(c+1\right)^2};t^2=\frac{1}{\left(d+1\right)^2}\)và khi đó ta cần chứng minh:\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}+\frac{1}{\left(d+1\right)^2}\ge1\)

Ta có BĐT phụ sau: \(\frac{1}{\left(p+1\right)^2}+\frac{1}{\left(q+1\right)^2}\ge\frac{1}{pq+1}\)(*)

Thật vậy, theo BĐT Cauchy-Schwarz cho hai dãy số (pq;1) và \(\left(\frac{p}{q};1\right)\), ta có: \(\left(pq+1\right)\left(\frac{p}{q}+1\right)\ge\left(p+1\right)^2\)

\(\Rightarrow\frac{1}{\left(p+1\right)^2}\ge\frac{\frac{q}{p+q}}{pq+1}\)(1)

Tương tự ta có: \(\Rightarrow\frac{1}{\left(q+1\right)^2}\ge\frac{\frac{p}{p+q}}{pq+1}\)(2)

Cộng theo vế của 2 BĐT (1) và (2), ta được:

\(\frac{1}{\left(p+1\right)^2}+\frac{1}{\left(q+1\right)^2}\ge\frac{1}{pq+1}\)(đúng với (*))

Áp dụng vào bài toán, ta được:

\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}+\frac{1}{\left(d+1\right)^2}\ge\frac{1}{ab+1}+\frac{1}{cd+1}\)

\(=\frac{1}{\frac{1}{cd}+1}+\frac{1}{cd+1}=\frac{cd}{cd+1}+\frac{1}{cd+1}=1\)

Đẳng thức xảy ra khi \(a=b=c=d=1\)hay x = y = z = t =  \(\frac{1}{2}\)

6 tháng 6 2020

22222222222222222222222

18 tháng 4 2019

Bài này dùng Cô si ngược dấu:

Áp dụng BĐT Cô si:\(\frac{1}{x^2+1}=1-\frac{x^2}{x^2+1}\ge1-\frac{x^2}{2x}=1-\frac{x}{2}\)

Tương tự với ba BĐT còn lại và cộng theo vế ta được:\(VT\ge4-\frac{x+y+z+t}{2}=2\)

Dấu "=' xảy ra tại a = b = c = 1

Vậy min A = 2 khi và chỉ khi a = b = c = 1

18 tháng 4 2019

tth ngược dấu nhé 

\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)

\(\Leftrightarrow\)\(-A+4=\left(1-\frac{1}{x^2+1}\right)+\left(1-\frac{1}{y^2+1}\right)+\left(1-\frac{1}{z^2+1}\right)+\left(1-\frac{1}{t^2+1}\right)\)

\(\Leftrightarrow\)\(-A+4\ge1-\frac{x}{2}+1-\frac{y}{2}+1-\frac{z}{2}+1-\frac{t}{2}=4-\frac{x+y+z+t}{2}=2\)

\(\Leftrightarrow\)\(-A+4\ge2\)

\(\Leftrightarrow\)\(A\le2\)

Tham khảo link này nha

https://olm.vn/hoi-dap/detail/243232541423.htm

13 tháng 4 2023

 Áp dụng BĐT Cauchy cho 3 số thực dương \(xy,yz,zx\), ta có \(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\). Do \(xy+yz+zx=3xyz\) nên\(3xyz\ge3\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow3\sqrt[3]{\left(xyz\right)^2}\left(\sqrt[3]{xyz}-1\right)\ge0\) \(\Leftrightarrow\sqrt[3]{xyz}\ge1\) \(\Leftrightarrow xyz\ge1\)

ĐTXR \(\Leftrightarrow\left\{{}\begin{matrix}xy=yz=zx\\xy+yz+zx=3xyz\end{matrix}\right.\) \(\Leftrightarrow x=y=z=1\)

Ta có \(\dfrac{x}{1+y^2}=\dfrac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\dfrac{xy^2}{1+y^2}\ge x-\dfrac{xy^2}{2y}\)\(=x-\dfrac{xy}{2}\)

Tương tự, ta có \(\dfrac{y}{1+z^2}\ge y-\dfrac{yz}{2}\) và \(\dfrac{z}{1+x^2}\ge z-\dfrac{zx}{2}\). Từ đó suy ra \(\dfrac{x}{1+y^2}+\dfrac{y}{1+z^2}+\dfrac{z}{1+x^2}\ge x+y+z-\dfrac{xy+yz+zx}{2}\) \(=x+y+z-\dfrac{3}{2}xyz\) . Từ đây suy ra \(Q\ge x+y+z\ge\sqrt[3]{xyz}\ge1\). ĐTXR \(\Leftrightarrow x=y=z=1\)

Vậy GTNN của \(Q\) là \(1\) đạt được khi \(x=y=z=1\)

14 tháng 4 2023

 Dạ thưa thầy, chỗ kia con sửa là \(Q\ge x+y+z\ge3\sqrt[3]{xyz}\ge3\) ạ. GTNN của Q là 3 khi \(x=y=z=1\)

2 tháng 8 2020

ta thấy VT chia hết cho 6 => VP chia hết cho 6 => \(5^z\equiv-1\left(mod6\right)\)

=> (-1)z \(\equiv\)-1 (mod 6) => z lẻ

xét x=y=z=1 (thỏa mãn)

xét z>1 => z,y>1, ta có pt <=> 2x.3y=(5+1)(5z-1-5z-2+....-1)

<=> 2x-1.3y-1\(\equiv\)-1 (mod 2) vô lý vì VT chẵn)

vậy pt có nghiệm nguyên dương là x=y=z=1